Meta-Kriging: Scalable Bayesian Modeling and Inference for Massive Spatial Datasets

نویسنده

  • Rajarshi Guhaniyogi
چکیده

Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations becomes large. There is a burgeoning literature on approaches for analyzing large spatial datasets. In this article, we propose a divide-and-conquer strategy within the Bayesian paradigm. We partition the data into subsets, analyze each subset using a Bayesian spatial process model and then obtain approximate posterior inference for the entire dataset by optimally combining the individual posterior distributions from each subset. Importantly, as is often desired in spatial analysis, we offer full posterior predictive inference at arbitrary locations for the outcome as well as the residual spatial surface after accounting for spatially oriented predictors. We call this approach “Spatial Meta-Kriging” (SMK). We do not need to store the entire data in one processor, and this leads to superior scalability. We demonstrate SMK with various spatial regression models including Gaussian processes and tapered Gaussian processes. The approach is intuitive, easy to implement, and is supported by theoretical results that we develop here. Empirical illustrations are provided using different simulation experiments and a geostatistical analysis of the Pacific Ocean sea surface temperature data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Approaches in 3D Geomechanical Earth Modeling

In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...

متن کامل

Automated Scalable Bayesian Inference via Hilbert Coresets

The automation of posterior inference in Bayesian data analysis has enabled experts and nonexperts alike to use more sophisticated models, engage in faster exploratory modeling and analysis, and ensure experimental reproducibility. However, standard automated posterior inference algorithms are not tractable at the scale of massive modern datasets, and modifications to make them so are typically...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

High-Dimensional Bayesian Geostatistics.

With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understan...

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Estimation and prediction in spatial models with block composite likelihoods using parallel computing

A block composite likelihood model is developed for estimation and prediction in large spatial datasets. The composite likelihood is constructed from the joint densities of pairs of adjacent spatial blocks. This allows large datasets to be split into many smaller datasets, each of which can be evaluated separately, and combined through a simple summation. Estimates for unknown parameters as wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017