A novel series expansion for the multivariate normal probability integrals based on Fourier series

نویسندگان

  • Hatem A. Fayed
  • Amir F. Atiya
چکیده

Abstract. In this article, we derive a series expansion of the multivariate normal probability integrals based on Fourier series. The basic idea is to transform the limits of each integral from hi to ∞ to be from −∞ to ∞ by multiplying the integrand by a periodic square wave that approximates the domain of the integral. This square wave is expressed by its Fourier series expansion. Then a Cholesky decomposition of the covariance matrix is applied to transform the integrand to a simple one that can be easily evaluated. The resultant formula has a simple pattern that is expressed as multiple series expansion of trigonometric and exponential functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series expansion of Wiener integrals via block pulse functions

In this paper, a suitable numerical method based on block pulse functions is introduced to approximate the Wiener integrals which the exact solution of them is not exist or it may be so hard to find their exact solutions. Furthermore, the error analysis of this method is given. Some numerical examples are provided which show that the approximation method has a good degree of accuracy. The main ...

متن کامل

Approximation of certain multivariate integrals

A Taylor series approximation to multivariate integrals taken with respect to a multivariate probability distribution is proposed and applied to the computation of multivariate normal probabilities and conditional expectations. The approximation does not require that the multivariate distribution have a structured covariance matrix and, in its simplest form, can be written as the product of uni...

متن کامل

Numerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev ‎approximation

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...

متن کامل

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2014