Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine.
نویسندگان
چکیده
Glutathione peroxidase (GSHPx) is a critical intracellular enzyme involved in detoxification of hydrogen peroxide (H(2)O(2)) to water. In the present study we examined the susceptibility of mice with a disruption of the glutathione peroxidase gene to the neurotoxic effects of malonate, 3-nitropropionic acid (3-NP), and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Glutathione peroxidase knock-out mice showed no evidence of neuropathological or behavioral abnormalities at 2-3 months of age. Intrastriatal injections of malonate resulted in a significant twofold increase in lesion volume in homozygote GSHPx knock-out mice as compared to both heterozygote GSHPx knock-out and wild-type control mice. Malonate-induced increases in conversion of salicylate to 2,3- and 2, 5-dihydroxybenzoic acid, an index of hydroxyl radical generation, were greater in homozygote GSHPx knock-out mice as compared with both heterozygote GSHPx knock-out and wild-type control mice. Administration of MPTP resulted in significantly greater depletions of dopamine, 3,4-dihydroxybenzoic acid, and homovanillic acid in GSHPx knock-out mice than those seen in wild-type control mice. Striatal 3-nitrotyrosine (3-NT) concentrations after MPTP were significantly increased in GSHPx knock-out mice as compared with wild-type control mice. Systemic 3-NP administration resulted in significantly greater striatal damage and increases in 3-NT in GSHPx knock-out mice as compared to wild-type control mice. The present results indicate that a knock-out of GSHPx may be adequately compensated under nonstressed conditions, but that after administration of mitochondrial toxins GSHPx plays an important role in detoxifying increases in oxygen radicals.
منابع مشابه
Enhanced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in CuZn-superoxide dismutase or glutathione peroxidase.
Administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mammals causes damage to the nigrostriatal dopaminergic pathway similar to that observed in Parkinson disease (PD). Reactive oxygen species (ROS) are thought to be involved in the pathogenesis of MPTP-mediated dopaminergic neurodegeneration. To further clarify the role of superoxide anion radical (*O2-) and to study the po...
متن کاملEffect of Quercetin in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-Induced Mouse Model of Parkinson's Disease
In this paper, the protective effect of the bioflavonoid quercetin on behaviors, antioxidases, and neurotransmitters in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-(MPTP-) induced Parkinson's disease (PD) was investigated. Quercetin treatment (50 mg/kg, 100 mg/kg and 200 mg/kg body weight) was orally administered for 14 consecutive days. The results show that quercetin treatment markedly im...
متن کاملNeuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease.
In the present study, we investigated the neuroprotective effects of kaempferol in the mouse model of Parkinson's disease, which was induced by neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We confirmed that MPTP led to behavioral deficits, depletion of dopamine and its metabolites, reduction in superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, and the e...
متن کاملThe Antioxidative Effect of Electro-Acupuncture in a Mouse Model of Parkinson's Disease
Accumulating evidence indicates that oxidative stress plays a critical role in Parkinson's disease (PD). Our previous work has shown that 100 Hz electro-acupuncture (EA) stimulation at ZUSANLI (ST36) and SANYINJIAO (SP6) protects neurons in the substantia nigra pars compacta from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in male C57BL/6 mice, a model of PD. In the present stu...
متن کاملGlycyrrhizin Attenuates MPTP Neurotoxicity in Mouse and MPP-Induced Cell Death in PC12 Cells.
The present study examined the inhibitory effect of licorice compounds glycyrrhizin and a metabolite 18beta-glycyrrhetinic acid on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse and on the 1-methyl-4-phenylpyridinium (MPP(+))-induced cell death in differentiated PC12 cells. MPTP treatment increased the activities of total superoxide dismutase, catalase and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2000