AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.
نویسندگان
چکیده
In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.
منابع مشابه
The Redundancy of Peptidoglycan Carboxypeptidases Ensures Robust Cell Shape Maintenance in Escherichia coli
UNLABELLED Peptidoglycan (PG) is an essential structural component of the bacterial cell wall and maintains the integrity and shape of the cell by forming a continuous layer around the cytoplasmic membrane. The thin PG layer of Escherichia coli resides in the periplasm, a unique compartment whose composition and pH can vary depending on the local environment of the cell. Hence, the growth of th...
متن کاملCatalytic Spectrum of the Penicillin-Binding Protein 4 of Pseudomonas aeruginosa, a Nexus for the Induction of β-Lactam Antibiotic Resistance
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen. A primary contributor to its ability to resist β-lactam antibiotics is the expression, following detection of the β-lactam, of the AmpC β-lactamase. As AmpC expression is directly linked to the recycling of the peptidoglycan of the bacterial cell wall, an important question is the identity of the signaling molecule(s) ...
متن کاملMolecular cloning, sequence analysis, and characterization of a penicillin-resistant DD-carboxypeptidase of Myxococcus xanthus.
We have cloned a gene, pdcA, from the genomic library of Myxococcus xanthus with an oligonucleotide probe representing conserved regions of penicillin-resistant DD-carboxypeptidases. The amino- and carboxy-terminal halves of the predicted pdcA gene product showed significant sequence similarity to N-acetylmuramoyl-L-alanine amidase and penicillin-resistant DD-carboxypeptidase, respectively. The...
متن کاملDD-carboxypeptidase and peptidoglycan transpeptidase from Pseudomonas aeruginosa.
Peptidoglycan transpeptidase and dd-carboxypeptidase have been detected in isolated membranes of Pseudomonas aeruginosa. Cephalosporins and penicillins fail to inhibit the transpeptidase at concentrations as high as 100 mug/ml. dd-Carboxypeptidase, on the other hand, is sensitive to inhibition by beta-lactam antibiotics. The presence of dimethyl sulfoxide in the reaction mixture results in a tw...
متن کاملSite-directed mutagenesis of proposed active-site residues of penicillin-binding protein 5 from Escherichia coli.
Alignment of the amino acid sequence of penicillin-binding protein 5 (PBP5) with the sequences of other members of the family of active-site-serine penicillin-interacting enzymes predicted the residues playing a role in the catalytic mechanism of PBP5. Apart from the active-site (Ser44), Lys47, Ser110-Gly-Asn, Asp175 and Lys213-Thr-Gly were identified as the residues making up the conserved box...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 193 24 شماره
صفحات -
تاریخ انتشار 2011