Effects of Inorganic Arsenic, Methylated Arsenicals, and Arsenobetaine on Atherosclerosis in the apoE−/− Mouse Model and the Role of As3mt-Mediated Methylation

نویسندگان

  • Luis Fernando Negro Silva
  • Maryse Lemaire
  • Catherine A. Lemarié
  • Dany Plourde
  • Alicia M. Bolt
  • Christopher Chiavatti
  • D. Scott Bohle
  • Vesna Slavkovich
  • Joseph H. Graziano
  • Stéphanie Lehoux
  • Koren K. Mann
چکیده

BACKGROUND Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. OBJECTIVES Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. METHODS We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. RESULTS We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. CONCLUSION Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual Variations in Inorganic Arsenic Metabolism Associated with AS3MT Genetic Polymorphisms

Individual variations in inorganic arsenic metabolism may influence the toxic effects. Arsenic (+3 oxidation state) methyltransferase (AS3MT) that can catalyze the transfer of a methyl group from S-adenosyl-l-methionine (AdoMet) to trivalent arsenical, may play a role in arsenic metabolism in humans. Since the genetic polymorphisms of AS3MT gene may be associated with the susceptibility to inor...

متن کامل

The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update.

Recent research of the metabolism and biological effects of arsenic has profoundly changed our understanding of the role of metabolism in modulation of toxicity and carcinogenicity of this metalloid. Historically, the enzymatic conversion of inorganic arsenic to mono- and dimethylated species has been considered a major mechanism for detoxification of inorganic arsenic. However, compelling expe...

متن کامل

Involvement of N-6 Adenine-Specific DNA Methyltransferase 1 (N6AMT1) in Arsenic Biomethylation and Its Role in Arsenic-Induced Toxicity

BACKGROUND In humans, inorganic arsenic (iAs) is metabolized to methylated arsenical species in a multistep process mainly mediated by arsenic (+3 oxidation state) methyltransferase (AS3MT). Among these metabolites is monomethylarsonous acid (MMAIII), the most toxic arsenic species. A recent study in As3mt-knockout mice suggests that unidentified methyltransferases could be involved in alternat...

متن کامل

Arsenic Circulation in Marine Ecosystems

Microbial conversion behavior was investigated with several standard arsenicals. As typical origin of marine micro-organisms, sediments, macro-algae, mollusk intestine and suspended substances were used. The degradation of arsenobetaine was observed with every origin, suggesting the ubiquitous occurrence of arsenobetaine-decomposing microorganisms in marine environment. Especially, the microorg...

متن کامل

Arsenic (+3 oxidation state) methyltransferase is a specific but replaceable factor against arsenic toxicity

Inorganic metalloids, such as arsenic (As), antimony (Sb), selenium (Se), and tellurium (Te), are methylated in biota. In particular, As, Se, and Te are methylated and excreted in urine. The biomethylation is thought to be a means to detoxify the metalloids. The methylation of As is catalyzed by arsenic (+3 oxidation state) methyltransferase (AS3MT). However, it is still unclear whether AS3MT c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2017