Arabidopsis PHL2 and PHR1 Act Redundantly as the Key Components of the Central Regulatory System Controlling Transcriptional Responses to Phosphate Starvation.

نویسندگان

  • Lichao Sun
  • Li Song
  • Ye Zhang
  • Zai Zheng
  • Dong Liu
چکیده

When confronted with inorganic phosphate (Pi) starvation, plants activate an array of adaptive responses to sustain their growth. These responses, in a large extent, are controlled at the transcriptional level. Arabidopsis (Arabidopsis thaliana) PHOSPHATE RESPONSE1 (PHR1) and its close homolog PHR1-like 1 (PHL1) belong to a 15-member family of MYB-CC transcription factors and are regarded as the key components of the central regulatory system controlling plant transcriptional responses to Pi starvation. The knockout of PHR1 and PHL1, however, causes only a partial loss of the transcription of Pi starvation-induced genes, suggesting the existence of other key components in this regulatory system. In this work, we used the transcription of a Pi starvation-induced acid phosphatase, AtPAP10, to study the molecular mechanism underlying plant transcriptional responses to Pi starvation. We first identified a DNA sequence on the AtPAP10 promoter that is critical for the transcription of AtPAP10. We then demonstrated that PHL2 and PHL3, two other members of the MYB-CC family, specifically bind to this DNA sequence and activate the transcription of AtPAP10. Unlike PHR1 and PHL1, the transcription and protein accumulation of PHL2 and PHL3 are upregulated by Pi starvation. RNA-sequencing analyses indicated that the transcription of most Pi starvation-induced genes is impaired in the phl2 mutant, indicating that PHL2 is also a key component of the central regulatory system. Finally, we showed that PHL2, and perhaps also PHL3, acts redundantly with PHR1 to regulate plant transcriptional response to Pi starvation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis

Plants respond to different stresses by inducing or repressing transcription of partially overlapping sets of genes. In Arabidopsis, the PHR1 transcription factor (TF) has an important role in the control of phosphate (Pi) starvation stress responses. Using transcriptomic analysis of Pi starvation in phr1, and phr1 phr1-like (phl1) mutants and in wild type plants, we show that PHR1 in conjuncti...

متن کامل

Proline Accumulation Is Regulated by Transcription Factors Associated with Phosphate Starvation.

Pro accumulation in plants is a well-documented physiological response to osmotic stress caused by drought or salinity. In Arabidopsis (Arabidopsis thaliana), the stress and ABA-induced Δ1-PYRROLINE-5-CARBOXYLATE SYNTHETASE1 (P5CS1) gene was previously shown to control Pro biosynthesis in such adverse conditions. To identify regulatory factors that control the transcription of P5CS1, Y1H screen...

متن کامل

The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation

Lipid remodeling is one of the most dramatic metabolic responses to phosphorus (P) starvation. It consists of the degradation of phospholipids to release the phosphate needed by the cell and the accumulation of glycolipids to replace phospholipids in the membranes. It is shown that PHR1, a well-described transcriptional regulator of P starvation of the MYB family, largely controls this response...

متن کامل

The transcriptional control of plant responses to phosphate limitation.

Plants have evolved an array of responses that adapt their growth to conditions of limited phosphate (Pi) supply. These involve biochemical and developmental changes that improve Pi acquisition and recycling, and protect against the stress of Pi starvation. The induction of these responses requires a sophisticated regulatory system that integrates information on external and internal plant Pi s...

متن کامل

Root Cell-Specific Regulators of Phosphate-Dependent Growth.

Cellular specialization in abiotic stress responses is an important regulatory feature driving plant acclimation. Our in silico approach of iterative coexpression, interaction, and enrichment analyses predicted root cell-specific regulators of phosphate starvation response networks in Arabidopsis (Arabidopsis thaliana). This included three uncharacterized genes termed Phosphate starvation-induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 170 1  شماره 

صفحات  -

تاریخ انتشار 2016