Homological Dimensions and Regular Rings

نویسندگان

  • ALINA IACOB
  • SRIKANTH B. IYENGAR
  • S. B. IYENGAR
چکیده

A question of Avramov and Foxby concerning injective dimension of complexes is settled in the affirmative for the class of noetherian rings. A key step in the proof is to recast the problem on hand into one about the homotopy category of complexes of injective modules. Analogous results for flat dimension and projective dimension are also established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gorenstein homological dimensions with respect to a semi-dualizing module over group rings

Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring  . It is shown that Gorenstein homological dimensions  of an  -RΓ module M with respect to a semi-dualizing module,  are equal over R and RΓ  .

متن کامل

COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION

In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.

متن کامل

Characterizing Local Rings via Homological Dimensions and Regular Sequences Shokrollah Salarian, Sean Sather-wagstaff, and Siamak Yassemi

Let (R, m) be a Noetherian local ring of depth d and C a semidualizing R-complex. Let M be a finite R-module and t an integer between 0 and d. If GC -dimension of M/aM is finite for all ideals a generated by an R-regular sequence of length at most d − t then either GC -dimension of M is at most t or C is a dualizing complex. Analogous results for other homological dimensions are also given.

متن کامل

Gorenstein Homological Dimensions of Commutative Rings

The classical global and weak dimensions of rings play an important role in the theory of rings and have a great impact on homological and commutative algebra. In this paper, we define and study the Gorenstein homological dimensions of commutative rings (Gorenstein projective, injective, and flat dimensions of rings) which introduce a new theory similar to the one of the classical homological d...

متن کامل

Global Gorenstein Dimensions of Polynomial Rings and of Direct Products of Rings

In this paper, we extend the well-known Hilbert’s syzygy theorem to the Gorenstein homological dimensions of rings. Also, we study the Gorenstein homological dimensions of direct products of rings. Our results generate examples of non-Noetherian rings of finite Gorenstein dimensions and infinite classical weak dimension.

متن کامل

First, second, and third change of rings theorems for the Gorenstein homological dimensions

Motivated by their impact on homological algebra, the change of rings results have been the subject of several interesting works in Gorenstein homological algebra over Noetherian rings. In this paper, we investigate the change of rings theorems for the Gorenstein dimensions over arbitrary rings. Namely, by the use of the notion of strongly Gorenstein modules, we extend the well-known first, sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009