Partitioned Runge-kutta Methods for Separable Hamiltonian Problems

نویسنده

  • L. ABIA
چکیده

Separable Hamiltonian systems of differential equations have the form dp/dt = -dH/dq, dq/dt = dH/dp, with a Hamiltonian function H that satisfies H = T(p) + K(q) (T and V are respectively the kinetic and potential energies). We study the integration of these systems by means of partitioned Runge-Kutta methods, i.e., by means of methods where different Runge-Kutta tableaux are used for the p and q equations. We derive a sufficient and "almost" necessary condition for a partitioned Runge-Kutta method to be canonical, i.e., to conserve the symplectic structure of phase space, thereby reproducing the qualitative properties of the Hamiltonian dynamics. We show that the requirement of canonicity operates as a simplifying assumption for the study of the order conditions of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

Linear Stability of Partitioned Runge-Kutta Methods

We study the linear stability of partitioned Runge–Kutta (PRK) methods applied to linear separable Hamiltonian ODEs and to the semidiscretization of certain Hamiltonian PDEs. We extend the] by presenting simplified expressions of the trace of the stability matrix, tr Ms, for the Lobatto IIIA–IIIB family of symplectic PRK methods. By making the connection to Padé approximants and continued fract...

متن کامل

Explicit Canonical Methods for Hamiltonian Systems

We consider canonical partitioned Runge-Kutta methods for separable Hamiltonians H = T(ß) + Viq) and canonical Runge-Kutta-Nyström methods for Hamiltonians of the form H = ^pTM~lp + Viq) with M a diagonal matrix. We show that for explicit methods there is great simplification in their structure. Canonical methods of orders one through four are constructed. Numerical experiments indicate the sui...

متن کامل

The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs

In this article we consider partitioned Runge-Kutta (PRK) methods for Hamiltonian partial differential equations (PDEs) and present some sufficient conditions for multi-symplecticity of PRK methods of Hamiltonian PDEs.

متن کامل

Quadratic invariants and multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs

In this paper, we study the preservation of quadratic conservation laws of Runge-Kutta methods and partitioned Runge-Kutta methods for Hamiltonian PDEs and establish the relation between multi-symplecticity of Runge-Kutta method and its quadratic conservation laws. For Schrödinger equations and Dirac equations, the relation implies that multi-sympletic RungeKutta methods applied to equations wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010