Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine.

نویسندگان

  • James Ross
  • Amer M Najjar
  • Madhuri Sankaranarayanapillai
  • William P Tong
  • Kumaralal Kaluarachchi
  • Sabrina M Ronen
چکیده

Expression of fatty acid synthase (FASN), the key enzyme in de novo synthesis of long-chain fatty acids, is normally low but increases in cancer. Consequently, FASN is a novel target for cancer therapy. However, because FASN inhibitors can lead to tumor stasis rather than shrinkage, noninvasive methods for assessing FASN inhibition are needed. To this end, we combined (1)H, (31)P, and (13)C magnetic resonance spectroscopy (MRS) (a) to monitor the metabolic consequences of FASN inhibition and (b) to identify MRS-detectable metabolic biomarkers of response. Treatment of PC-3 cells with the FASN inhibitor Orlistat for up to 48 h resulted in inhibition of FASN activity by 70%, correlating with 74% inhibition of fatty acid synthesis. Furthermore, we have determined that FASN inhibition results not only in lower phosphatidylcholine levels but also in a 59% drop in the phospholipid precursor phosphocholine (PCho). This drop resulted from inhibition in PCho synthesis as a result of a reduction in the cellular activity of its synthetic enzyme choline kinase. The drop in PCho levels following FASN inhibition was confirmed in SKOV-3 ovarian cancer cells treated with Orlistat and in MCF-7 breast cancer cells treated with Orlistat as well as cerulenin. Combining data from all treated cells, the drop in PCho significantly correlated with the drop in de novo synthesized fatty acid levels, identifying PCho as a potential noninvasive MRS-detectable biomarker of FASN inhibition in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells.

Phosphoinositide 3-kinase (PI3K) is an attractive target for novel mechanism-based anticancer treatment. We used magnetic resonance (MR) spectroscopy (MRS) to detect biomarkers of PI3K signaling inhibition in human breast cancer cells. MDA-MB-231, MCF-7, and Hs578T cells were treated with the prototype PI3K inhibitor LY294002, and the (31)P MR spectra of cell extracts were monitored. In every c...

متن کامل

Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition.

Several mitogen-activated protein kinase (MAPK) signaling inhibitors are currently undergoing clinical trial as part of novel mechanism-based anticancer treatment strategies. This study was aimed at detecting biomarkers of MAPK signaling inhibition in human breast and colon carcinoma cells using magnetic resonance spectroscopy. We investigated the effect of the prototype MAPK kinase inhibitor U...

متن کامل

Magnetic Resonance Spectroscopy Detectable Metabolomic Fingerprint of Response to Antineoplastic Treatment

Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage. Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance spectroscopy (MRS) and magnetic resonance spectros...

متن کامل

Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models.

MN58b is a novel anticancer drug that inhibits choline kinase, resulting in inhibition of phosphocholine synthesis. The aim of this work was to develop a noninvasive and robust pharmacodynamic biomarker for target inhibition and, potentially, tumor response following MN58b treatment. Human HT29 (colon) and MDA-MB-231 (breast) carcinoma cells were examined by proton (1H) and phosphorus (31P) mag...

متن کامل

In vitro nuclear magnetic resonance spectroscopy metabolic biomarkers for the combination of temozolomide with PI3K inhibition in paediatric glioblastoma cells

Recent experimental data showed that the PI3K pathway contributes to resistance to temozolomide (TMZ) in paediatric glioblastoma and that this effect is reversed by combination treatment of TMZ with a PI3K inhibitor. Our aim is to assess whether this combination results in metabolic changes that are detectable by nuclear magnetic resonance (NMR) spectroscopy, potentially providing metabolic bio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 7 8  شماره 

صفحات  -

تاریخ انتشار 2008