CC-RANSAC: Fitting planes in the presence of multiple surfaces in range data

نویسندگان

  • Orazio Gallo
  • Roberto Manduchi
  • Abbas Rafii
چکیده

Range sensors, in particular time-of-flight and stereo cameras, are being increasingly used for applications such as robotics, automotive, human-machine interface and virtual reality. The ability to recover the geometrical structure of visible surfaces is critical for scene understanding. Typical structured indoor or urban scenes are often represented via compositional models comprising multiple planar surface patches. The RANSAC robust regression algorithm is the most popular technique to date for extracting individual planar patches from noisy data sets containing multiple surfaces. Unfortunately, RANSAC fails to produce reliable results in situations with two nearby patches of limited extent, where a single plane crossing through the two patches may contain more inliers than the “correct” models. This is the case of steps, curbs, or ramps, which represent the focus of our research for the impact they can have on cars’ safe parking system or robot navigation. In an effort to improve the quality of regression in these cases, we propose a modification of the RANSAC algorithm, dubbed CC-RANSAC, that only considers the largest connected components of inliers to evaluate the fitness of a candidate plane. We provide experimental evidence that CC-RANSAC may recover the planar patches composing a typical step or ramp with substantially higher accuracy than the traditional RANSAC algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Segmentation of Building Facades Using Terrestrial Laser Data

There is an increasing interest of the scientific community in the generation of 3D facade models from terrestrial laser scanner (TLS) data. The segmentation of building facades is one of the essential tasks to be carried out in a 3D modelling process. Since in reality, majority of facade components are planar, the detection and segmentation of geometric elements like planes respond to the prev...

متن کامل

Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy

ÐThis paper addresses a common problem in the segmentation of range images. We would like to identify and fit surfaces of known type wherever these are a good fit. This paper presents methods for the least-squares fitting of spheres, cylinders, cones, and tori to 3D point data, and their application within a segmentation framework. Least-squares fitting of surfaces other than planes, even of si...

متن کامل

Quality Analysis on Ransac-based Roof Facets Extraction from Airborne Lidar Data

RANSAC algorithm is a robust method for model estimation. It is widely used in the extraction of geometry primitives and 3D model reconstruction. However, there has been relatively little comprehensive evaluation in RANSAC-based approach for plane extraction. In order to provide a reference for improving the quality on RANSAC-based approach for roof facets extraction or segmentation, this paper...

متن کامل

An Improved Segmentation Approach for Planar Surfaces from Unstructured 3d Point Clouds

The extraction of object features from massive unstructured point clouds with different local densities, especially in the presence of random noisy points, is not a trivial task even if that feature is a planar surface. Segmentation is the most important step in the feature extraction process. In practice, most segmentation approaches use geometrical information to segment the 3D point cloud. T...

متن کامل

Bias in Robust Estimation Caused by Discontinuities and Multiple Structures

When fitting models to data containing multiple structures, such as when fitting surface patches to data taken from a neighborhood that includes a range discontinuity, robust estimators must tolerate both gross outliers and pseudo outliers. Pseudo outliers are outliers to the structure of interest, but inliers to a different structure. They differ from gross outliers because of their coherence....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011