Jazz Melody Generation from Recurrent Network Learning of Several Human Melodies
نویسنده
چکیده
Recurrent (neural) networks have been deployed as models for learning musical processes, by computational scientists who study processes such as dynamic systems. Over time, more intricate music has been learned as the state of the art in recurrent networks improves. One particular recurrent network, the Long Short-Term Memory (LSTM) network shows promise as a module that can learn long songs, and generate new songs. We are experimenting with using two LSTM modules to cooperatively learn several human melodies, based on the songs’ harmonic structures, and the feedback inherent in the network. We show that these networks can learn to reproduce four human melodies. We then introduce two harmonizations, constructed by us, that are given to the learned networks. i.e. we supply a reharmonization of the song structure, so as to generate new songs. We describe the reharmonizations, and show the new melodies that result. We also use a different harmonic structure from an existing jazz song not in the training set, to generate a new melody. LSTM Networks as Modules in a Music
منابع مشابه
Learning to Create Jazz Melodies Using a Product of Experts
We describe a neural network architecture designed to learn the musical structure of jazz melodies over chord progressions, then to create new melodies over arbitrary chord progressions from the resulting connectome (representation of neural network structure). Our architecture consists of two sub-networks, the interval expert and the chord expert, each being LSTM (long short-term memory) recur...
متن کاملMulti-Phase Learning for Jazz Improvisation and Interaction
This article presents a model for computational learning composed of two phases that enable a machine to interactively improvise jazz with a human. To explore and demonstrate this model, a working system has been built, called CHIME for Computer Human Interacting Musical Entity. In phase 1, a recurrent neural network is used to train the machine to reproduce 3 jazz melodies. Using this knowledg...
متن کاملImprovisation and Learning
This article presents a 2-phase computational learning model and application. As a demonstration, a system has been built, called CHIME for Computer Human Interacting Musical Entity. In phase 1 of training, recurrent back-propagation trains the machine to reproduce 3 jazz melodies. The recurrent network is expanded and is further trained in phase 2 with a reinforcement learning algorithm and a ...
متن کاملA Hierarchical Recurrent Neural Network for Symbolic Melody Generation
In recent years, neural networks have been used to generate music pieces, especially symbolic melody. However, the long-term structure in the melody has posed great difficulty for designing a good model. In this paper, we present a hierarchical recurrent neural network for melody generation, which consists of three Long-Short-Term-Memory (LSTM) subnetworks working in a coarse-to-fine manner. Sp...
متن کاملA Learning Scheme for Generating Expressive Music Performances of Jazz Standards
We describe our approach for generating expressive music performances of monophonic Jazz melodies. It consists of three components: (a) a melodic transcription component which extracts a set of acoustic features from monophonic recordings, (b) a machine learning component which induces an expressive transformation model from the set of extracted acoustic features, and (c) a melody synthesis com...
متن کامل