Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli.

نویسندگان

  • Oliver Hädicke
  • Katja Bettenbrock
  • Steffen Klamt
چکیده

The manipulation of cofactor pools such as ATP or NAD(P)H has for long been recognized as key targets for metabolic engineering of microorganisms to improve yields and productivities of biotechnological processes. Several works in the past have shown that enforcing ATP futile cycling may enhance the synthesis of certain products under aerobic conditions. However, case studies demonstrating that ATP wasting may also have beneficial effects for anaerobic production processes are scarce. Taking lactic acid as an economically relevant product, we demonstrate that induction of ATP futile cycling in Escherichia coli leads to increased yields and specific production rates under anaerobic conditions, even in the case where lactate is already produced with high yields. Specifically, we constructed a high lactate producer strain KBM10111 (= MG1655 ΔadhE::Cam ΔackA-pta) and implemented an IPTG-inducible overexpression of ppsA encoding for PEP synthase which, together with pyruvate kinase, gives rise to an ATP consuming cycle. Under induction of ppsA, KBM10111 exhibits a 25% higher specific lactate productivity as well as an 8% higher lactate yield. Furthermore, the specific substrate uptake rate was increased by 14%. However, trade-offs between specific and volumetric productivities must be considered when ATP wasting strategies are used to shift substrate conversion from biomass to product synthesis and we discuss potential solutions to design optimal processes. In summary, enforced ATP futile cycling has great potential to optimize a variety of production processes and our study demonstrates that this holds true also for anaerobic processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Process Development of Recombinant Human Granulocyte Colony-Stimulating Factor (rh-GCSF) Production in Escherichia coli

Background: The protein hormone granulocyte colony-stimulating factor (GCSF) stimulates the production of white blood cells and plays an important role in medical treatment of cancer patients. Methods: An efficient process was developed for heterologous expression of human GCSF in E. coli BL21 (DE3). The feeding rate was adjusted to achieve the maximum attainable specific growth rate under crit...

متن کامل

L-malate production by metabolically engineered Escherichia coli.

Escherichia coli strains (KJ060 and KJ073) that were previously developed for succinate production have now been modified for malate production. Many unexpected changes were observed during this investigation. The initial strategy of deleting fumarase isoenzymes was ineffective, and succinate continued to accumulate. Surprisingly, a mutation in fumarate reductase alone was sufficient to redirec...

متن کامل

Homolactate fermentation by metabolically engineered Escherichia coli strains.

We report the homofermentative production of lactate in Escherichia coli strains containing mutations in the aceEF, pfl, poxB, and pps genes, which encode the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, and phosphoenolpyruvate synthase, respectively. The process uses a defined medium and two distinct fermentation phases: aerobic growth to an optical density of abou...

متن کامل

Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.

During anaerobic growth of Escherichia coli, pyruvate formate-lyase (PFL) and lactate dehydrogenase (LDH) channel pyruvate toward a mixture of fermentation products. We have introduced a third branch at the pyruvate node in a mutant of E. coli with a mutation in pyruvate dehydrogenase (PDH*) that renders the enzyme less sensitive to inhibition by NADH. The key starting enzymes of the three bran...

متن کامل

Maximizing Production of Human Interferon-γ in HCDC of Recombinant E. coli

Tuning recombinant protein expression is an approach which can be successfully employed for increasing the yield of recombinant protein production in high cell density cultures. On the other hand, most of the previous results reported the optimization induction conditions during batch and continuous culture of recombinant E. coli, and consequently fed-batch culture have received less attention....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 112 10  شماره 

صفحات  -

تاریخ انتشار 2015