Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase.

نویسندگان

  • Anindya Ghosh-Roy
  • Zilu Wu
  • Alexandr Goncharov
  • Yishi Jin
  • Andrew D Chisholm
چکیده

Axons of adult Caenorhabditis elegans neurons undergo robust regenerative growth after laser axotomy. Here we show that axotomy of PLM sensory neurons triggers axonal calcium waves whose amplitude correlates with the extent of regeneration. Genetic elevation of Ca(2+) or cAMP accelerates formation of a growth cone from the injured axon. Elevated Ca(2+) or cAMP also facilitates apparent fusion of axonal fragments and promotes branching to postsynaptic targets. Conversely, inhibition of voltage-gated calcium channels or calcium release from internal stores reduces regenerative growth. We identify the fusogen EFF-1 as critical for axon fragment fusion and the basic leucine zipper domain (bZip) protein CREB (cAMP response element-binding protein) as a key effector for branching. The effects of elevated Ca(2+) or cAMP on regrowth require the MAPKKK (mitogen-activated protein kinase kinase kinase) DLK-1. Increased cAMP signaling can partly bypass the requirement for the bZip protein CEBP-1, a downstream factor of the DLK-1 kinase cascade. These findings reveal the relationship between Ca(2+)/cAMP signaling and the DLK-1 MAPK (mitogen-activated protein kinase) cascade in regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth.

During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabdit...

متن کامل

S6 kinase inhibits intrinsic axon regeneration capacity via AMP kinase in Caenorhabditis elegans.

The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon reg...

متن کامل

Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans

The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans th...

متن کامل

Regulation of DLK-1 Kinase Activity by Calcium-Mediated Dissociation from an Inhibitory Isoform

MAPKKK dual leucine zipper-bearing kinases (DLKs) are regulators of synaptic development and axon regeneration. The mechanisms underlying their activation are not fully understood. Here, we show that C. elegans DLK-1 is activated by a Ca(2+)-dependent switch from inactive heteromeric to active homomeric protein complexes. We identify a DLK-1 isoform, DLK-1S, that shares identical kinase and leu...

متن کامل

An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK

A broadly known method to stimulate the growth potential of axons is to elevate intracellular levels of cAMP, however the cellular pathway(s) that mediate this are not known. Here we identify the Dual Leucine-zipper Kinase (DLK, Wnd in Drosophila) as a critical target and effector of cAMP in injured axons. DLK/Wnd is thought to function as an injury 'sensor', as it becomes activated after axona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 9  شماره 

صفحات  -

تاریخ انتشار 2010