DNA-binding protein in kinetoplastid protozoans
نویسندگان
چکیده
DNA from Kinetoplastida contains the unusual modified base β-D-glucosyl(hydroxymethyl)uracil, called J. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes in Trypanosoma brucei. We have now identified a protein in nuclear extracts of bloodstream stage T.brucei that binds specifically to J-containing duplex DNA. J-specific DNA binding was also observed with extracts from the kinetoplastids Crithidia fasciculata and Leishmania tarentolae. We purified the 90 kDa C.fasciculata J-binding protein 50 000-fold and cloned the corresponding gene from C.fasciculata, T.brucei and L.tarentolae. Recombinant proteins expressed in Escherichia coli demonstrated J-specific DNA binding. The J-binding proteins show 43–63% identity and are unlike any known protein. The discovery of a J-binding protein suggests that J, like methylated cytosine in higher eukaryotes, functions via a protein intermediate.
منابع مشابه
beta-D-glucosyl-hydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in their telomeres.
The unusual DNA base beta-D-glucosyl-hydroxymethyluracil, called "J, " replaces approximately 0.5-1% of Thy in DNA of African trypanosomes but has not been found in other organisms thus far. In Trypanosoma brucei, J is located predominantly in repetitive DNA, and its presence correlates with the silencing of telomeric genes. Using antibodies specific for J, we have developed sensitive assays to...
متن کاملEvolution of codon usage and base contents in kinetoplastid protozoans.
In this study we analyze and compare the trends in codon usage in five representative species of kinetoplastid protozoans (Crithidia fasciculata, Leishmania donovani, L. major, Trypanosoma cruzi and T. brucei), with the purpose of investigating the processes underlying these trends. A principal component analysis shows that the G+C content at the third codon position represents the main source ...
متن کاملThe unconventional kinetoplastid kinetochore: from discovery toward functional understanding
The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in...
متن کاملRapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملThe ornithine decarboxylase gene of Trypanosoma brucei: Evidence for horizontal gene transfer from a vertebrate source.
Kinetoplastid protozoans in the family Trypanosomatidae are parasites, many of them responsible for serious diseases in humans and domestic animals. Ornithine decarboxlyase (ODC), a protein at the core of polyamine metabolism, is a potential target for therapies to overcome these diseases. Eukaryotic phylogenies were constructed from full-length genes for ODC to determine the origin of ODC in t...
متن کامل