Open Problems in Monte Carlo Renormalization Group Applications to Critical Phenomenon

نویسنده

  • Rajan Gupta
چکیده

The Nlonw Carlo Renormalization Group (A4CRG) methods and the theory behind thcm arc reviewed, The Cllpta-Cordcry improved A4CRG method is described and cumparcd with the standard one. The emphasis is on the progress made in understanding the truncation errols in the Linearized Transformation Ma+,rix and on open problems. Lastly, some of t!lc existing methods for calculating the renormalized Hamiltonian arc reviewed and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histogram Monte Carlo Position-Space Renormalization Group: Applications to the Site Percolation

We study site percolation on the square lattice and show that, when augmented with histogram Monte Carlo simulations for large lattices, the cell-to-cell renormalization group approach can be used to determine the critical probability accurately. Unlike the cell-to-site method and an alternate renormalization group approach proposed recently by Sahimi and Rassamdana, both of which rely on ab in...

متن کامل

Monte Carlo Renormalization Group Calculation in Λφ

We start by discussing some theoretical issues of renormalization group transformations and Monte Carlo renormalization group technique. A method to compute the anomalous dimension is proposed and investigated. As an application, we find excellent values for critical exponents in λφ43. Some technical questions regarding the hybrid algorithm and strong coupling expansions, used to compute the cr...

متن کامل

Inverse Monte Carlo renormalization group transformations for critical phenomena.

We introduce a computationally stable inverse Monte Carlo renormalization group transformation method that provides a number of advantages for the calculation of critical properties. We are able to simulate the fixed point of a renormalization group for arbitrarily large lattices without critical slowing down. The log-log scaling plots obtained with this method show remarkable linearity, leadin...

متن کامل

Critical Behavior of the Ferromagnetic Ising Model on a Sierpiński Carpet: Monte Carlo Renormalization Group Study

We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpiński fractal with Hausdorff dimension df ≃ 1.8928. This method is shown to be relevant to the calculation of the critical temperature Tc and the magnetic eigen-exponent yh on such structures. On the other hand, scaling corrections hinder the calculation of the temperature...

متن کامل

Another Monte Carlo Renormalization Group Algorithm

A Monte Carlo Renormalization Group algorithm is used on the Ising model to derive critical exponents and the critical temperature. The algorithm is based on a minimum relative entropy iteration developed previously to derive potentials from equilibrium configurations. This previous algorithm is modified to derive useful information in an RG iteration. The method is applied in several dimension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1986