A Bayesian Network model for predicting the outcome of in vitro fertilization
نویسندگان
چکیده
We present a Bayesian network model for predicting the outcome of in-vitro fertilization (IVF). The problem is characterized by a peculiar missingness process, and we propose a simple but effective averaging approach which improves parameter estimates compared to the traditional MAP estimation. The model can provide relevant insights to IVF experts.
منابع مشابه
A Bayesian network model for predicting pregnancy after in vitro fertilization
We present a Bayesian network model for predicting the outcome of in vitro fertilization (IVF). The problem is characterized by a particular missingness process; we propose a simple but effective averaging approach which improves parameter estimates compared to the traditional MAP estimation. We present results with generated data and the analysis of a real data set. Moreover, we assess by mean...
متن کاملPredicting Implantation Outcome of In Vitro Fertilization and Intracytoplasmic Sperm Injection Using Data Mining Techniques
Objective The main purpose of this article is to choose the best predictive model for IVF/ICSI classification and to calculate the probability of IVF/ICSI success for each couple using Artificial intelligence. Also, we aimed to find the most effective factors for prediction of ART success in infertile couples. MaterialsAndMethods In this cross-sectional study, the data of 486 patients are colle...
متن کاملProvide a Predictive Model to Identify People with Diabetes Using the Decision Tree
Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...
متن کاملMinimal Stimulation In Vitro Fertilization: A Better Outcome
advantages of mild-stimulation have long been appreciated, while there was a called for more patient-friendly approach in ovarian stimulation around 20 years ago (1)...
متن کاملComparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings
Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...
متن کامل