Purification and identification of an FMN-dependent NAD(P)H azoreductase from Enterococcus faecalis.
نویسندگان
چکیده
Azoreductases reduce the azo bond (N=N) in azo dyes to produce colorless amine products. Crude cell extracts from Enterococcus faecalis have been shown to utilize both NADH and NADPH as electron donors for azo dye reduction. An azoreductase was purified from E. faecalis by hydrophobic, anion exchange and affinity chromatography. The azoreductase activity of the purified preparation was tested on a polyacrylamide gel after electrophoresis under native conditions and the protein that decolorized the azo dye (Methyl Red) with both NADH and NADPH was identified by mass spectrometry to be AzoA. Previously, the heterologously expressed and purified AzoA was shown to utilize NADH only for the reduction of Methyl Red. However, AzoA purified from the wild-type organism was shown to utilize both coenzymes but with more than 180-fold preference for NADH over NADPH as an electron donor to reduce Methyl Red. Also, its specific activity was more than 150-fold higher than the previous study on AzoAwhen NADH was used as the electron donor. The catalytic efficiency for Methyl Red reduction by AzoA from E. faecalis was several orders of magnitude higher than other azoreductases that were purified from a heterologous source.
منابع مشابه
Identification and isolation of an azoreductase from Enterococcus faecium.
Azo dyes are commonly used in many commercial industries. Some of the azo dyes can produce carcinogenic compounds after being metabolized by azoreductase. Several human intestinal microbiota possess azoreductase activity which plays an important role in the toxicity and mutagenicity of these azo dye compounds. The acpD gene product (AzoEf1) responsible for the azoreductase activity of Enterococ...
متن کاملMutation network-based understanding of pleiotropic and epistatic mutational behavior of Enterococcus faecalis FMN-dependent azoreductase
We previously identified a highly active homodimeric FMN-dependent NADH-preferred azoreductase (AzoA) from Enterococcus faecalis, which cleaves the azo bonds (R-N˭N-R) of diverse azo dyes, and determined its crystal structure. The preliminary network-based mutational analysis suggested that the two residues, Arg-21 and Asn-121, have an apparent mutational potential for fine-tuning of AzoA, base...
متن کاملIdentification of NAD(P)H Quinone Oxidoreductase Activity in Azoreductases from P. aeruginosa: Azoreductases and NAD(P)H Quinone Oxidoreductases Belong to the Same FMN-Dependent Superfamily of Enzymes
Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. ...
متن کاملIdentification of Polyketide Inhibitors Targeting 3-Dehydroquinate Dehydratase in the Shikimate Pathway of Enterococcus faecalis
Due to the emergence of resistance toward current antibiotics, there is a pressing need to develop the next generation of antibiotics as therapeutics against infectious and opportunistic diseases of microbial origins. The shikimate pathway is exclusive to microbes, plants and fungi, and hence is an attractive and logical target for development of antimicrobial therapeutics. The Gram-positive co...
متن کاملTwo forms of NAD-dependent D-mandelate dehydrogenase in Enterococcus faecalis IAM 10071.
Two forms of NAD-dependent D-mandelate dehydrogenase (D-ManDHs) were purified from Enterococcus faecalis IAM 10071. While these two enzymes consistently exhibited high activity toward large 2-ketoacid substrates that were branched at the C3 or C4 position, they gave distinctly different K(m) and V(max) values for these substrates and had distinct molecular weights by gel electrophoresis and gel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current issues in molecular biology
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2009