Natural Superconvergent Points of Equilateral Triangular Finite Elements – A Numerical Example

نویسندگان

  • Zhimin Zhang
  • Ahmed Naga
چکیده

A numerical test case demonstrates that Lobatto and Gauss points are not natural superconvergent points for cubic and quartic finite elements under equilateral triangular mesh. 2000 Mathematics Subject Classification. Primary 65N30, Secondary 65N15, 41A10, 41A25, 41A27, 41A63.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivative Superconvergence of Equilateral Triangular Finite Elements

Derivative superconvergent points under locally equilateral triangular mesh for both the Poisson and Laplace equations are reported. Our results are conclusive. For the Poisson equation, symmetry points are only superconvergent points for cubic and higher order elements. However, for the Laplace equation, most of superconvergent points are not symmetry points, which are reported for the first t...

متن کامل

Locating Natural Superconvergent Points of Finite Element Methods in 3d

In [20], we analytically identified natural superconvergent points of function values and gradients for several popular three-dimensional polynomial finite elements via an orthogonal decomposition. This paper focuses on the detailed process for determining the superconvergent points of pentahedral and tetrahedral elements.

متن کامل

Numerical investigation on the effects of six control rods arranged in equilateral triangular configurations on fluid flow and forced convection heat transfer from a circular cylinder

The present work deals with heat transfer characteristics as well as fluid flow patterns in laminar flow regime for a circular cylinder with six control rods arranged in equilateral triangular geometries. The computations have been carried out by a finite volume approach using the overset grid method. The unsteady flow at Re= 200 and Pr= 0.7 and 7.0 was examined. The effect of the control rods ...

متن کامل

A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes

A carefully designed procedure is presented to modify the piecewise constant strain field of linear triangular FEM models, and to reconstruct a strain field with an adjustable parameter a. A novel Galerkin-like weakform derived from the Hellinger–Reissner variational principle is proposed for establishing the discretized system equations. The new weak form is very simple, possesses the same goo...

متن کامل

Superconvergence for Second Order Triangular Mixed and Standard Finite Elements

JYV ASKYL A 1996 2 Superconvergence for second order triangular mixed and standard nite elements. Abstract In this paper we will prove that both the second order Raviart-Thomas type mixed nite elements and the quadratic standard nite elements on regular and uniform triangular partitions, are superconvergent with respect to Fortin interpolation. This result implies the superconvergence for quadr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004