ViZDoom: DRQN with Prioritized Experience Replay, Double-Q Learning, & Snapshot Ensembling

نویسندگان

  • Christopher Schulze
  • Marcus Schulze
چکیده

ViZDoom is a robust, first-person shooter reinforcement learning environment, characterized by a significant degree of latent state information. In this paper, double-Q learning and prioritized experience replay methods are tested under a certain ViZDoom combat scenario using a competitive deep recurrent Q-network (DRQN) architecture. In addition, an ensembling technique known as snapshot ensembling is employed using a specific annealed learning rate to observe differences in ensembling efficacy under these two methods. Annealed learning rates are important in general to the training of deep neural network models, as they shake up the statusquo and counter a model’s tending towards local optima. While both variants show performance exceeding those of built-in AI agents of the game, the known stabilizing effects of double-Q learning are illustrated, and priority experience replay is again validated in its usefulness by showing immediate results early on in agent development, with the caveat that value overestimation is accelerated in this case. In addition, some unique behaviors are observed to develop for priority experience replay (PER) and double-Q (DDQ) variants, and snapshot ensembling of both PER and DDQ proves a valuable method for improving performance of the ViZDoom Marine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prioritized Experience Replay

Experience replay lets online reinforcement learning agents remember and reuse experiences from the past. In prior work, experience transitions were uniformly sampled from a replay memory. However, this approach simply replays transitions at the same frequency that they were originally experienced, regardless of their significance. In this paper we develop a framework for prioritizing experienc...

متن کامل

The Effects of Memory Replay in Reinforcement Learning

Experience replay is a key technique behind many recent advances in deep reinforcement learning. Allowing the agent to learn from earlier memories can speed up learning and break undesirable temporal correlations. Despite its widespread application, very little is understood about the properties of experience replay. How does the amount of memory kept affect learning dynamics? Does it help to p...

متن کامل

Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays

During sleep and awake rest, the hippocampus replays sequences of place cells that have been activated during prior experiences. These have been interpreted as a memory consolidation process, but recent results suggest a possible interpretation in terms of reinforcement learning. The Dyna reinforcement learning algorithms use off-line replays to improve learning. Under limited replay budget, a ...

متن کامل

Distributed Prioritized Experience Replay

We propose a distributed architecture for deep reinforcement learning at scale, that enables agents to learn effectively from orders of magnitude more data than previously possible. The algorithm decouples acting from learning: the actors interact with their own instances of the environment by selecting actions according to a shared neural network, and accumulate the resulting experience in a s...

متن کامل

Snapshot Ensembles: Train 1, get M for free

Ensembles of neural networks are known to be much more robust and accurate than individual networks. However, training multiple deep networks for model averaging is computationally expensive. In this paper, we propose a method to obtain the seemingly contradictory goal of ensembling multiple neural networks at no additional training cost. We achieve this goal by training a single neural network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.01000  شماره 

صفحات  -

تاریخ انتشار 2018