Dynamic Neural Network-Based Output Feedback Tracking Control for Uncertain Nonlinear Systems
نویسنده
چکیده
A dynamic neural network (DNN) observer-based output feedback controller for uncertain nonlinear systems with bounded disturbances is developed. The DNN-based observer works in conjunction with a dynamic filter for state estimation using only output measurements during online operation. A sliding mode term is included in the DNN structure to robustly account for exogenous disturbances and reconstruction errors. Weight update laws for the DNN, based on estimation errors, tracking errors, and the filter output are developed, which guarantee asymptotic regulation of the state estimation error. A combination of a DNN feedforward term, along with the estimated state feedback and sliding mode terms yield an asymptotic tracking result. The developed output feedback (OFB) method yields asymptotic tracking and asymptotic estimation of unmeasurable states for a class of uncertain nonlinear systems with bounded disturbances. A twolink robot manipulator is used to investigate the performance of the proposed control approach. [DOI: 10.1115/1.4035871]
منابع مشابه
Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملAdaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm
This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...
متن کاملUsing Tracking Differentiators in Designing Nonlinear Disturbance Observers for Uncertain Systems
Using Tracking Differentiators in Designing Nonlinear Disturbance Observers for Uncertain SystemsNaser Kazemzadeh, Saeed BarghandanAbstractIn the present paper, a practical designing method has been proposed for a novel class of NDOs based on TD. Such NDOs can nearly estimate all uncertain disturbances (specifically disturbances without prediction information). Regarding the outstanding perform...
متن کاملAdaptive Neural Network Approach for a Class of Uncertain Non-affine Nonlinear Systems
The paper proposes a new output feedback adaptive tracking control scheme using neural network for a class of uncertain non-affine nonlinear systems that only the system output variables can be measured. The scheme adopts low-pass filter to transform non-affine nonlinear systems into affine in the pseudo-input dynamics. No state observer is employed and few adapting parameters to be tuned and L...
متن کامل