Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

نویسندگان

  • Dacheng Wang
  • Lingchao Zhang
  • Yinghong Gu
  • M. Q. Mehmood
  • Yandong Gong
  • Amar Srivastava
  • Linke Jian
  • T. Venkatesan
  • Cheng-Wei Qiu
  • Minghui Hong
چکیده

Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface

Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is ...

متن کامل

Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate.

Phase shift exceeding tau/2 at 1 THz is demonstrated by using electrically controlled birefringence in a homeotropically aligned nematic liquid crystal (E7) cell, 570 microm in thickness. The driving voltage required for a phase shift of 90 degrees is 125 V (rms). We demonstrate that the phase shifter works as an electrically switchable quarter-wave plate at 1 THz. The device can also be used a...

متن کامل

Terahertz achromatic quarter-wave plate.

Phase retarders usually present a strong frequency dependence. We discuss the design and characterization of a terahertz achromatic quarter-wave plate. This wave plate is made from six birefringent quartz plates precisely designed and stacked together. Phase retardation has been measured over the whole terahertz range by terahertz polarimetry. This achromatic wave plate demonstrates a huge freq...

متن کامل

Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface

Previous studies on hybrid dielectric-graphene metasurfaces have been used to implement induced transparency devices, while exhibiting high Q-factors based on trapped magnetic resonances. Typically, the transparency windows are single wavelength and less appropriate for polarization conversion structures. In this work, a quarter-wave plate based on a hybrid silicon-graphene metasurface with con...

متن کامل

Planar Holographic Metasurfaces for Terahertz Focusing

Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015