Development and validation of a fatigue-modified, EMG-assisted biomechanical model of the lumbar region

نویسنده

  • Omid Haddad
چکیده

EMG-assisted biomechanical modeling is a well-established modeling technique for estimating muscle forces in biomechanical models of the lumbar spine. Fatigue, however, creates a problem in that fatigue alters the relationship between the EMG signal generated by the muscle and the amount of force being generated. The aim of this study was to evaluate the impact of fatigue on EMG-related components in an EMG-assisted biomechanical model: the gain factor (i.e. maximum muscle stress value in N/cm), force-length modulation factor, and force-velocity modulation factor. This is a particularly relevant research topic in that fatigue is considered a potential risk factor for musculoskeletal disorders, and being able to quantify muscle forces and joint reaction forces in these fatigued conditions would be helpful to understand the underlying risk factors in these types of exertion. The present study can inform and guide efforts in determining safety criteria in task design to decrease incidences of musculoskeletal disorders. This study was conducted in two phases: the isometric extension phase (1) and the isokinetic extension phase (2). Each was designed to provide the data necessary to evaluate the hypothesis that either the length-force modulation factor (Phase 1) or forcevelocity modulation factor (Phase 2) need to be dependent on the level of fatigue experienced by the extensor muscle of the lumbar region. Four subjects participated in each of these phases, performing trunk extension exertions at a level of 50% of their maximum force generation capacity to generate muscular fatigue in the trunk extensor muscles. In the isometric phase subjects performed controlled, isometric trunk extension test contraction exertions at 10, 20, and 30 angles

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a lumbar EMG-based coactivation index for the assessment of complex dynamic tasks.

The objective of this study was to develop and test an EMG-based coactivation index and compare it to a coactivation index defined by a biologically assisted lumbar spine model to differentiate between tasks. The purpose was to provide a universal approach to assess coactivation of a multi-muscle system when a computational model is not accessible. The EMG-based index developed utilised anthrop...

متن کامل

Torso flexion loads and the fatigue failure of human lumbosacral motion segments.

STUDY DESIGN Spine loads associated with lifting a 9-kg weight were estimated at three torso flexion angles (0 degrees, 22.5 degrees, and 45 degrees), and lumbosacral motion segments were cyclically loaded using these loads until failure or to a maximum of 10,020 cycles. OBJECTIVES To simulate the postures and loads experienced by the lumbar spine during repetitive lifting of moderate weights...

متن کامل

تأثیر یک ایستگاه کاری قالیبافی بر خستگی عضله ذوزنقه ای

Introduction: This study aimed to investigate the effect of carpet weaving at a proposed workstation on Upper Trapezius (UTr) fatigue during a task cycle. Fatigue in the shoulder is one of the most important precursors for upper limb musculoskeletal disorders. One of the most prevalent musculoskeletal disorders between carpet weavers is disorder of the shoulder region. Methods: This cross-se...

متن کامل

The Effect of Lower Extremity Muscle Fatigue on Dynamic Postural Control Analyzed by Electromyography

Purpose: Postural control preserves organs and body parts in a proper biomechanical stance which exists in two forms: static and dynamic. Fatigue is one of the factors that affects postural control. This study aimed to compare the electromyography (EMG) activity of the lower extremity muscles before and after fatigue. Methods: This study was descriptive correlational and based on the research ...

متن کامل

Stress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis

Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015