Neurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neuroprotectin D1.
نویسنده
چکیده
The integrity of retinal pigment epithelial cells is critical for photoreceptor cell survival and vision. The essential omega-3 fatty acid, docosahexaenoic acid, attains its highest concentration in the human body in photoreceptors. Docosahexaenoic acid is the essential precursor of neuroprotectin D1 (NPD1). NPD1 acts against apoptosis mediated by A2E, a byproduct of phototransduction that becomes toxic when it accumulates in aging retinal pigment epithelial (RPE) cells and in some inherited retinal degenerations. Here we also describe that neurotrophins, mainly pigment epithelium-derived factor, induce NPD1 synthesis and its polarized apical secretion, suggesting paracrine and autocrine bioactivity of this lipid mediator. In addition, DHA elicits a concentration-dependent and selective potentiation of pigment epithelial-derived factor-stimulated NPD1 synthesis and release through the apical RPE cell surface. The bioactivity of signaling activated by PEDF and DHA demonstrates synergistic cytoprotection when cells were challenged with oxidative stress, resulting in concomitant NPD1 synthesis. Also, DHA and PEDF synergistically activate anti-apoptotic protein expression and decreased pro-apoptotic Bcl-2 protein expression and caspase 3 activation during oxidative stress. Thus, DHA-derived NPD1 protects against RPE cell damage mediated by aging/disease-induced A2E accumulation. Also, neurotrophins are regulators of NPD1 synthesis and of its polarized apical efflux from RPE cells. Therefore, NPD1 may elicit autocrine and paracrine bioactivity in cells located in the proximity of the interphotoreceptor matrix.
منابع مشابه
Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1.
Retinal degenerative diseases result in retinal pigment epithelial (RPE) and photoreceptor cell loss. These cells are continuously exposed to the environment (light) and to potentially pro-oxidative conditions, as the retina's oxygen consumption is very high. There is also a high flux of docosahexaenoic acid (DHA), a PUFA that moves through the blood stream toward photoreceptors and between the...
متن کاملNeuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer's disease.
Docosahexaenoic acid (DHA), the main omega-3 fatty acid, is concentrated and avidly retained in membrane phospholipids of the nervous system. DHA is involved in brain and retina function, aging, and neurological and psychiatric/behavioral illnesses. Neuroprotectin D1 (NPD1), the first-identified stereoselective bioactive product of DHA, exerts neuroprotection in models of experimental stroke by...
متن کاملNeurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling.
Integrity of retinal pigment epithelial cells is necessary for photoreceptor survival and vision. The essential omega-3 fatty acid, docosahexaenoic acid, attains its highest concentration in the human body in photoreceptors and is assumed to be a target for lipid peroxidation during cell damage. We have previously shown, in contrast, that docosahexaenoic acid is also the precursor of neuroprote...
متن کاملSynthesis Pyrano [2,3-c] Pyrazole-based compounds to induce apoptosis by reducing the expression of anti-apoptotic Bcl-2 protein in human breast cancer MCF-7 cells
Aim: Bcl-2 is a potential target for tumor treatment. The inhibition of the Bcl-2 production is research target of attract in the field of anti-cancer drug development. Recently, the assessment of antitumor activity appeared to be promising for pyrazole derivatives. Therefore, this study was designed to investigate the anti-cancer effects of novel pyrazole derivatives (HN1and HN2.). Material an...
متن کاملAntibacterial and anti-cancer activities of Artemisia turcomanica extract on gastric cancer cell line (AGS) and its interaction on cyclin D1 and cyckin E genes
Background: The use of medicinal herbs in traditional medicine has been important and many of these plants have antioxidant, anti-inflammatory, antimicrobial and anti-cancer effects. Objective: The aim of this study was to evaluate the antibacterial and anti-cancer effects of Artemisia turcomanica extract on gastric cancer cell line (AGS) and its effect on expression of cyclin D1 and cyclin E g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in experimental medicine and biology
دوره 613 شماره
صفحات -
تاریخ انتشار 2008