Variable Selection for Nonparametric Gaussian Process Priors: Models and Computational Strategies.

نویسندگان

  • Terrance Savitsky
  • Marina Vannucci
  • Naijun Sha
چکیده

This paper presents a unified treatment of Gaussian process models that extends to data from the exponential dispersion family and to survival data. Our specific interest is in the analysis of data sets with predictors that have an a priori unknown form of possibly nonlinear associations to the response. The modeling approach we describe incorporates Gaussian processes in a generalized linear model framework to obtain a class of nonparametric regression models where the covariance matrix depends on the predictors. We consider, in particular, continuous, categorical and count responses. We also look into models that account for survival outcomes. We explore alternative covariance formulations for the Gaussian process prior and demonstrate the flexibility of the construction. Next, we focus on the important problem of selecting variables from the set of possible predictors and describe a general framework that employs mixture priors. We compare alternative MCMC strategies for posterior inference and achieve a computationally efficient and practical approach. We demonstrate performances on simulated and benchmark data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixtures of Gaussian process priors

Nonparametric Bayesian approaches based on Gaussian processes have recently become popular in the empirical learning community. They encompass many classical methods of statistics, like Radial Basis Functions or various splines, and are technically convenient because Gaussian integrals can be calculated analytically. Restricting to Gaussian processes, however, forbids for example the implementi...

متن کامل

Guest Editors' Introduction to the Special Issue on Bayesian Nonparametrics

BAYESIAN nonparametric models are probabilistic models defined over infinite-dimensional parameter spaces. For Gaussian process models of regression and classification functions, the parameter space consists of a set of continuous functions. For the Dirichlet process mixture models used in density estimation and clustering, the parameter space is dense in the space of probability measures. Baye...

متن کامل

Posterior Consistency in Nonparametric Regression Problems under Gaussian Process Priors

Posterior consistency can be thought of as a theoretical justification of the Bayesian method. One of the most popular approaches to nonparametric Bayesian regression is to put a nonparametric prior distribution on the unknown regression function using Gaussian processes. In this paper, we study posterior consistency in nonparametric regression problems using Gaussian process priors. We use an ...

متن کامل

Bayesian inference with rescaled Gaussian process priors

Abstract: We use rescaled Gaussian processes as prior models for functional parameters in nonparametric statistical models. We show how the rate of contraction of the posterior distributions depends on the scaling factor. In particular, we exhibit rescaled Gaussian process priors yielding posteriors that contract around the true parameter at optimal convergence rates. To derive our results we e...

متن کامل

Rates of Contraction of Posterior Distributions Based on Gaussian Process Priors

We derive rates of contraction of posterior distributions on nonparametric or semiparametric models based on Gaussian processes. The rate of contraction is shown to depend on the position of the true parameter relative to the reproducing kernel Hilbert space of the Gaussian process and the small ball probabilities of the Gaussian process. We determine these quantities for a range of examples of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical science : a review journal of the Institute of Mathematical Statistics

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2011