A ug 2 00 8 NILPOTENT BICONE AND CHARACTERISTIC SUBMODULE OF A REDUCTIVE LIE ALGEBRA
نویسنده
چکیده
— Let g be a finite dimensional complex reductive Lie algebra and S(g) its symmetric algebra. The nilpotent bicone of g is the subset of elements (x, y) of g×g whose subspace generated by x and y is contained in the nilpotent cone. The nilpotent bicone is naturally endowed with a scheme structure, as nullvariety of the augmentation ideal of the subalgebra of S(g) ⊗C S(g) generated by the 2-order polarizations of invariants of S(g). The main result of this note is that the nilpotent bicone is a complete intersection of dimension 3(bg − rkg), where bg and rkg are the dimension of Borel subalgebras and the rank of g respectively. This affirmatively answers a conjecture of KraftWallach concerning the nullcone [KrW2]. In addition, we introduce and study in this note the characteristic submodule of g. The properties of the nilpotent bicone and the characteristic submodule are known to be very important for the understanding of the commuting variety and its ideal of definition. The main difficulty encountered for this work is that the nilpotent bicone is not reduced. To deal with this problem, we introduce an auxiliary reduced variety, the principal bicone. The nilpotent bicone, as well as the principal bicone, are linked to jet schemes. We study their dimensions using arguments from motivic integration. Namely, we follow methods developed by M. Mustaţǎ in [Mu]. At last, we give applications of our results to invariant theory.
منابع مشابه
Gains from diversification on convex combinations: A majorization and stochastic dominance approach
By incorporating both majorization theory and stochastic dominance theory, this paper presents a general theory and a unifying framework for determining the diversification preferences of risk-averse investors and conditions under which they would unanimously judge a particular asset to be superior. In particular, we develop a theory for comparing the preferences of different convex combination...
متن کاملImproved immunogenicity of tetanus toxoid by Brucella abortus S19 LPS adjuvant.
BACKGROUND Adjuvants are used to increase the immunogenicity of new generation vaccines, especially those based on recombinant proteins. Despite immunostimulatory properties, the use of bacterial lipopolysaccharide (LPS) as an adjuvant has been hampered due to its toxicity and pyrogenicity. Brucella abortus LPS is less toxic and has no pyrogenic properties compared to LPS from other gram negati...
متن کاملSteady electrodiffusion in hydrogel-colloid composites: macroscale properties from microscale electrokinetics.
A rigorous microscale electrokinetic model for hydrogel-colloid composites is adopted to compute macroscale profiles of electrolyte concentration, electrostatic potential, and hydrostatic pressure across membranes that separate electrolytes with different concentrations. The membranes are uncharged polymeric hydrogels in which charged spherical colloidal particles are immobilized and randomly d...
متن کاملPerturbative Analysis of Dynamical Localisation
In this paper we extend previous results on convergent perturbative solutions of the Schrödinger equation of a class of periodically timedependent two-level systems. The situation treated here is particularly suited for the investigation of two-level systems exhibiting the phenomenon of (approximate) dynamical localisation. We also present a convergent perturbative expansion for the secular fre...
متن کاملCollinear contextual suppression
The context of a target can modulate behavioral as well as neural responses to that target. For example, target processing can be suppressed by iso-oriented surrounds whereas it can be facilitated by collinear contextual elements. Here, we present experiments in which collinear elements exert strong suppression whereas iso-oriented contextual surrounds yield no contextual modulation--contrary t...
متن کامل