Targeted Molecular Dynamics Simulations of Protein Unfolding
نویسندگان
چکیده
The usefulness of targeted molecular dynamics (TMD) for the simulation of large conformational transitions is assessed in this work on the unfolding process of chymotrypsin inhibitor 2 (CI2). In TMD the force field is supplemented with a harmonic restraint which promotes either the increase of the conformational distance from the native state or the decrease of the distance from a target unfolded structure. As a basis of comparison, unfolding is also simulated by conventional, i.e., unrestrained, molecular dynamics at 375 and 475 K. In all simulations, an implicit approximation of solvation is used to adiabatically model the solvent response, which is appropriate for the nanosecond unfolding simulation method used here. In total, 44 TMD and 25 unrestrained high-temperature molecular dynamics simulations of CI2 unfolding were performed with an implicit solvation model that allowed more than 150 ns to be sampled. Qualitative agreement is found between the results of the TMD and unrestrained molecular dynamics at high temperature. The energies of the conformations sampled during TMD unfolding at 300 and 475 K are comparable to the ones obtained by conventional molecular dynamics at 375 and 475 K, respectively. The sequence of events, i.e., secondary and tertiary structure disruption, is similar in all unfolding simulations, despite the diversity of the pathways. Previous simulations of CI2 performed with different force fields and solvation models showed a similar sequence of events. This indicates that the TMD pathways are realistic even for very large conformational transitions such as protein unfolding.
منابع مشابه
Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملComputer simulations of protein folding by targeted molecular dynamics.
We have performed 128 folding and 45 unfolding molecular dynamics runs of chymotrypsin inhibitor 2 (CI2) with an implicit solvation model for a total simulation time of 0.4 microseconds. Folding requires that the three-dimensional structure of the native state is known. It was simulated at 300 K by supplementing the force field with a harmonic restraint which acts on the root-mean-square deviat...
متن کاملDesigning a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations
The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...
متن کاملDetection of Hydrophobic Clusters in Molecular Dynamics Protein Unfolding Simulations Using Association Rules
One way of exploring protein unfolding events associated with the development of Amyloid diseases is through the use of multiple Molecular Dynamics Protein Unfolding Simulations. The analysis of the huge amount of data generated in these simulations is not a trivial task. In the present report, we demonstrate the use of Association Rules applied to the analysis of the variation profiles of the ...
متن کامل