Bifurcations and Chaos in the Duffing Equation with One Degenerate Saddle Point and Single External Forcing
نویسندگان
چکیده
In this paper, we study the Duffing equation with one degenerate saddle point and one external forcing and obtain the criteria of chaos of Duffing equation under periodic perturbation through Melnikov method. Numerical simulations not only show the correctness of the theoretical analysis but also exhibit the more new complex dynamical behaviors, including homoclinic bifurcation, bifurcation diagrams, maximum Lyapunov exponents diagrams, phase portraits and Poincaré maps.
منابع مشابه
Hybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملChaotic Behavior in Differential Equations Driven by a Brownian Motion
In this paper, we investigate the chaotic behavior of ordinary differential equations with a homoclinic orbit to a dissipative saddle point under an unbounded random forcing driven by a Brownian motion. We prove that, for almost all sample pathes of the Brownian motion in the classical Wiener space, the forced equation admits a topological horseshoe of infinitely many branches. This result is t...
متن کاملDouble Hopf bifurcation in delayed van der Pol-Duffing equation
In this paper, we study dynamics in delayed van der Pol–Duffing equation, with particular attention focused on nonresonant double Hopf bifurcation. Both multiple time scales and center manifold reduction methods are applied to obtain the normal forms near a double Hopf critical point. A comparison between these two methods is given to show their equivalence. Bifurcations are classified in a two...
متن کاملA normal form for excitable media.
We present a normal form for traveling waves in one-dimensional excitable media in the form of a differential delay equation. The normal form is built around the well-known saddle-node bifurcation generically present in excitable media. Finite wavelength effects are captured by a delay. The normal form describes the behavior of single pulses in a periodic domain and also the richer behavior of ...
متن کاملFrequency–driven chaos in the electrical circuit of Duffing-Holmes oscillator and its control
Accurate detection of weak periodic signals within noise and possibility of secure messaging have made Duffing oscillator (DO) highly important in the field of communication. Investigation on the properties of DO is thus ardently sought for. An elegant approach to accomplish the same is to fabricate electronic circuit simulating DO non-linear equation and to study the effect of input signal amp...
متن کامل