Axin2 Controls Bone Remodeling through β-Catenin-BMP Signaling Pathway in Adult Mice
نویسنده
چکیده
INTRODUCTION: Bone remodeling, a dynamic process involving bone resorption followed by bone formation, takes place throughout life to maintain bone homeostasis. Osteoporosis pseudoglioma (OPPG) syndrome and high bone mass (HBM) syndrome are both mapped to the locus of Lrp5, a receptor for Wnt ligands in activation of β-catenin signaling (1). OPPG patients harbor inactivating mutations in the Lrp5 gene (2). In contrast, an activating mutation (Gly171Val) in Lrp5 is responsible for the HBM syndrome (3). These findings clearly link Wnt/β-catenin signaling through LRP5 to the regulation of bone mass. Axin2 is a protein scaffold shown to mediate APC-induced β-catenin degradation, thereby, acting as a negative regulator of β-catenin signaling (4). We analyzed the bone phenotype of adult female Axin2-lacZ knockout (KO) mice (5) in order to investigate the mechanism by which Wnt/β-catenin signaling regulates bone remodeling.
منابع مشابه
Icariin Augments Bone Formation and Reverses the Phenotypes of Osteoprotegerin-Deficient Mice through the Activation of Wnt/β-Catenin-BMP Signaling
Icariin has been mostly reported to enhance bone fracture healing and treat postmenopausal osteoporosis in ovariectomized animal model. As another novel animal model of osteoporosis, there is few publication about the effect of Icariin on osteoprotegerin-deficient mice. Therefore, the goal of this study is to find the effect on bone formation and underlying mechanisms of Icariin in osteoprotege...
متن کاملTGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملSOX7 co-regulates Wnt/β-catenin signaling with Axin-2: both expressed at low levels in breast cancer
SOX7 as a tumor suppressor belongs to the SOX F gene subfamily and is associated with a variety of human cancers, including breast cancer, but the mechanisms involved are largely unclear. In the current study, we investigated the interactions between SOX7 and AXIN2 in their co-regulation on the Wnt/β-catenin signal pathway, using clinical specimens and microarray gene expression data from the G...
متن کاملWNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development.
On pathological stress, the heart reactivates several signaling pathways that traditionally were thought to be operational only in the developing heart. One of these pathways is the WNT signaling pathway. WNT controls heart development but is also modulated during adult heart remodeling. This review summarizes the currently available data regarding WNT signaling during left ventricular (LV) rem...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کامل