The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments
نویسندگان
چکیده
The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution.
منابع مشابه
In Vitro Investigation into Plasmonic Photothermal Effect of Hollow Gold Nanoshell Irradiated with Incoherent Light
Introduction: Hollow gold nanoshells (HAuNS) are one of the most attractive nanostructures for biomedical applications due to their interesting physicochemical properties. This study sought to evaluate the plasmonic photothermal effect of HAuNS irradiated with incoherent light on melanoma cell line. Materials and Methods: After the synthesis of nanostructures, the temperature changes of HAuNS ...
متن کاملSynthesis and Evaluation of Gold Nanoparticles/Nanorods to Use in Plasmonic Photothermal Therapy
Introduction: Photothermal therapy is a method of cancer treatment that plasmonic nanoparticles are used to convert infrared light into local heat. Due to the plasmonic properties of gold nanoparticles, this compound was used as a contrast agent. The aim of this study was to synthesize gold nanoparticles with different conjugations for photothermal therapy. Methods: This research was an experi...
متن کاملPlasmonic Photothermal Heating of Intraperitoneal Tumors through the Use of an Implanted Near-Infrared Source
Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of plasmonic photothermal therapy have focused on isolated subcutaneous tumors. For more complex models of disease such as advanced ovarian cancer, one of the primary barriers to go...
متن کاملMapping Photothermally Induced Gene Expression in Living Cells and Tissues by Nanorod-Locked Nucleic Acid Complexes
The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell r...
متن کاملModified Photochemical Properties of Mitoxantrone by Plasmonic Photothermal Response of Hollow Gold Nanoshells
Introduction: Mitoxantrone (MX) has been introduced as a photosensitizer drug. However, due to some side effects, the widespread use of this drug has been confronted with some limitations. Hollow gold nanoshells (HGN) have attracted considerable attention due to their interesting photochemical features that can use as nanocarrier. In this paper, the thermal response of MX and the use of this pr...
متن کامل