Differential Regulation of Proteins and a Possible Role for Manganese Superoxide Dismutase in Bioluminescence of Panellus stipticus Revealed by Suppression Subtractive Hybridization

نویسندگان

  • Galina A. Vydryakova
  • John Bissett
  • G. A. Vydryakova
  • J. Bissett
چکیده

Suppression subtractive hybridization (SSH) was employed to investigate bioluminescence in Panellus stipticus (Bull.) P. Karst. by detecting proteins differentially expressed in bioluminescent and luminescent strains. Comparisons of luminescent and non-luminescent monokaryon cultures of North American strains revealed differences in transcript levels of proteins responsible for post-translational modification (PTM) of enzymes. A similar comparison of a luminescent strain of P. stipticus from North America with a non-luminescent European strain revealed the presence of extracellular manganese superoxide dismutase (MnSOD) in the luminescent form, in addition to proteins involved in PTM. The application of MnSOD-specific inhibitors to luminescent mycelium resulted in the rapid loss of luminescence. The relevance to luminescence of proteins involved in PTM is discussed, together with a possible role for MnSOD that considers the potential for SODs to form stable complexes with catechols revealed in previously published research. In light of the recent discovery that hispidine may be the precursor of fungal luciferin, we consider a hypothetical mechanism for fungal luminescence in which the ο-hydroquinone moiety of a hispidine derivative ligates with the extracellular form of MnSOD producing a semiquinone-radical complex, with the resultant semiquinonato complex potentially reacting with molecular oxygen or other reactive oxygen species to produce sufficiently excited intermediates to emit light on relaxation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Over-expression of a protein kinase gene enhances the defense of tobacco against Rhizoctonia solani.

To identify Nicotiana tabacum genes involved in resistance and susceptibility to Rhizoctonia solani, suppression subtractive hybridization was used to generate a cDNA library from transcripts that are differentially expressed during a compatible and incompatible interaction. This allowed the isolation of a protein kinase cDNA that was down-regulated during a compatible and up-regulated during a...

متن کامل

Differential Expression of Mitochondrial Manganese Superoxide Dismutase (SOD) in Triticum aestivum Exposed to Silver Nitrate and Silver Nanoparticles

Background: The increasing use of nanoparticles (NPs) may have negative impacts on both organisms andthe environment. Objectives: The differential expression of mitochondrial manganese superoxide dismutase (MnSOD) gene in wheat in response to silver nitrate nanoparticles (AgNPs) and AgNO3 was investigated. Materials and Methods: A quantita...

متن کامل

Human myometrial genes are differentially expressed in labor: a suppression subtractive hybridization study.

Human parturition is effected by a cascade of factors, of which many are unknown. We aim to identify the genes that are changed by labor in the human myometrium by suppression subtractive hybridization. We also seek to ascertain whether these genes are differentially expressed in the myometrium at the upper or fundal and lower segments of the uterus. Term myometrial tissues were obtained from l...

متن کامل

Overexpression of Manganese Superoxide Dismutase Selectively Modulates the Activity of Jun-associated Transcription Factors in Fibrosarcoma Cells1

Manganese superoxide dismutase (MnSOD) Is reduced in a variety of tumor cells and has been proposed to be a new type of tumor suppressor gene. The mechanism(s) by which MnSOD suppresses cancer development is currently unknown, However, expression of this antioxidant might play a significant role in maintaining cellular redox status. The relationship between MnSOD expression and modulation of DN...

متن کامل

Superoxide Dismutase in the Suppression of Tumor Cell Growth by Manganese The Role of Cellular Glutathione Peroxidase Redox Regulation

Manganese-containing superoxide dismutase (MnSOD) is an essential primary antioxidant enzyme that converts superoxide radical to hydrogen peroxide and molecular oxygen within the mitochondrial matrix. Cytosolic glutathione peroxidase (GPX) converts hydrogen peroxide into water. MnSOD is reduced in a variety of tumor types and has been proposed to be a new kind of tumor suppressor gene, but the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016