A Galois-theoretic Approach to Kanev’s Correspondence

نویسندگان

  • HERBERT LANGE
  • ANITA M. ROJAS
چکیده

Let G be a finite group, Λ an absolutely irreducible Z[G]-module and w a weight of Λ. To any Galois covering with group G we associate two correspondences, the Schur and the Kanev correspondence. We work out their relation and compute their invariants. Using this, we give some new examples of Prym-Tyurin varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

On a Discrepancy among Picard-vessiot Theories in Positive Characteristics

There is a serious discrepancy among literature on the Picard-Vessiot theory in positive characteristics (for iterative differential fields). We consider descriptions of Galois correspondence in four approaches to this subject: Okugawa’s result [7], Takeuchi’s Hopf algebraic approach [11] (and [3]), the result of Matzat and van der Put [6], and the model theoretic approach by Pillay [8]. In the...

متن کامل

A Lie Theoretic Galois Theory for the Spectral Curves of an Integrable System. Ii

In the study of integrable systems of ODE’s arising from a Lax pair with a parameter, the constants of the motion occur as spectral curves. Many of these systems are algebraically completely integrable in that they linearize on the Jacobian of a spectral curve. In an earlier paper the authors gave a classification of the spectral curves in terms of the Weyl group and arranged the spectral curve...

متن کامل

A Galois code for valuations

Valuations on a field K are encoded in the absolute Galois group GK of K: They are in one-to-one correspondence to the conjugacy classes of decomposition subgroups of GK which (apart from few exceptions) can be characterized in group theoretic terms. Roughly speaking decomposition subgroups of GK are maximal subgroups of GK with a Sylow-subgroup containing a non-trivial abelian normal subgroup....

متن کامل

Crystalline cohomology of algebraic stacks and Hyodo–Kato cohomology

In this text we study using stack–theoretic techniques the crystalline structure on the de Rham cohomology of a complete smooth variety over a p–adic field. Such a structure is known to exists by the CdR–conjecture of Fontaine now proven independently by Faltings, Niziol, and Tsuji, and is intimately tied to the action of Galois on the p–adic étale cohomology. The paper contains two main parts....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008