Pseudo Schur complements, pseudo principal pivot transforms and their inheritance properties
نویسندگان
چکیده
Extensions of the Schur complement and the principal pivot transform, where the usual inverses are replaced by the Moore-Penrose inverse, are revisited. These are called the pseudo Schur complement and the pseudo principal pivot transform, respectively. First, a generalization of the characterization of a block matrix to be an M -matrix is extended to the nonnegativity of the Moore-Penrose inverse. A comprehensive treatment of the fundamental properties of the extended notion of the principal pivot transform is presented. Inheritance properties with respect to certain matrix classes are derived, thereby generalizing some of the existing results. Finally, a thorough discussion on the preservation of left eigenspaces by the pseudo principal pivot transformation is presented.
منابع مشابه
On the Inheritance of Some Complementarity Properties by Schur Complements
In this paper, we consider the Schur complement of a subtransformation of a linear transformation defined on the product of two finite dimensional real Hilbert spaces, and in particular, on two Euclidean Jordan algebras. We study complementarity properties of linear transformations that are inherited by principal subtransformations, principal pivot transformations, and Schur complements.
متن کاملON THE STRUCTURE OF FINITE PSEUDO- COMPLEMENTS OF QUADRILATERALS AND THEIR EMBEDDABILITY
A pseudo-complement of a quadrilateral D of order n, n, > 3, is a non-trivial (n+l)- regular linear space with n - 3n + 3 points and n + n - 3 lines. We prove that if n > 18 and D has at least one line of size n - 1, or if n > 25 , then the set of lines of D consists of three lines of size n -1, 6(n - 2) lines of size n - 2, and n - 5n + 6 lines of size n - 3. Furthermore, if n > 21 and D...
متن کاملCommutative pseudo BE-algebras
The aim of this paper is to introduce the notion of commutative pseudo BE-algebras and investigate their properties.We generalize some results proved by A. Walendziak for the case of commutative BE-algebras.We prove that the class of commutative pseudo BE-algebras is equivalent to the class of commutative pseudo BCK-algebras. Based on this result, all results holding for commutative pseudo BCK-...
متن کاملAlgebraic Multilevel Preconditioning of Finite Element Matrices Based on Element Agglomeration
We consider an algebraic multilevel preconditioning method for SPD matrices resulting from finite element discretization of elliptic PDEs. In particular, we focus on non-M matrices. The method is based on element agglomeration and assumes access to the individual element matrices. The coarse-grid element matrices are simply Schur complements computed from local neighborhood matrices (agglomerat...
متن کاملSome properties on Schur complements of H-matrices and diagonally dominant matrices
In this paper, we obtain a theorem on the distribution of eigenvalues for Schur complements of H-matrices. Further, we give some properties of diagonal-Schur complements on diagonally dominant matrices and their distribution of eigenvalues. © 2004 Elsevier Inc. All rights reserved. AMS classification: 15A45; 15A48
متن کامل