Reduced PLP2 expression increases ER-stress-induced neuronal apoptosis and risk for adverse neurological outcomes after hypoxia ischemia injury.

نویسندگان

  • Lilei Zhang
  • Tao Wang
  • David Valle
چکیده

Both genetic and environmental factors contribute to the development of intellectual disability (ID). Previously, we identified a promoter variant (-113C>A) in PLP2 (proteolipid protein 2) that results in an ∼4-fold reduction of transcript and protein and is overly represented in males with X-linked ID (XLID). The functional connection between reduced PLP2 expression and increased risk to XLID is unknown. To investigate the pathophysiological mechanisms, we studied a Plp2-loss-of-function murine model and fibroblasts from XLID patients hemizygous for PLP2-(-113C>A). We found that Plp2-deficient mouse embryonic fibroblast and human fibroblasts carrying PLP2-(-113C>A) have similarly defective endoplasmic reticulum (ER) trafficking, increased basal ER stress and exaggerated susceptibility to inducers of ER stress. Plp2-deficient mice show increased neuronal death to ER stress and hypoxia in vitro and in a neonatal hypoxia-ischemia model in vivo. Finally, we provide evidence that up-regulation of PLP2 directly promotes resistance to ER stressors. Results of our studies support the hypothesis that reduced PLP2 expression increase susceptibility of neurons to environmental ER stressors such as hypoxia and ischemia and that increased apoptosis and neuronal death contribute to the risks to ID in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic effects of L-Cysteine in newborn mice subjected to hypoxia-ischemia brain injury via the CBS/H2S system: Role of oxidative stress and endoplasmic reticulum stress

Neonatal hypoxic-ischemic (HI) injury is a major cause of neonatal death and neurological dysfunction. H2S has been shown to protect against hypoxia-induced injury and apoptosis of neurons. L-Cysteine is catalyzed by cystathionine-β-synthase (CBS) in the brain and sequentially produces endogenous H2S. The present study was designed to investigate whether L-Cysteine could attenuate the acute bra...

متن کامل

Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxy- phenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury

Objective(s): Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods: The...

متن کامل

Oral administration of Ginkgolide B alleviates hypoxia-induced neuronal damage in rat hippocampus by inhibiting oxidative stress and apoptosis

Objective(s): The aim of this study is to explore the potential neuroprotective effects of Ginkgolide B (GB), a main terpene lactone and active component in Ginkgo biloba, in hypoxia-induced neuronal damage, and to further investigate its possible mechanisms.Materials and Methods: 54 Sprague-Dawley rats were randomly divided into three groups: the untreated control group (n=18); the hypoxia gro...

متن کامل

Ischemia/Reperfusion-Induced CHOP Expression Promotes Apoptosis and Impairs Renal Function Recovery: The Role of Acidosis and GPR4

Endoplasmic reticulum (ER) stress-induced apoptosis is implicated in a wide range of diseases, including ischemia/reperfusion injury (IRI). As a common feature of ER stress, the role of CCAT/enhancer-binding protein homologous protein (CHOP) in renal IRI has not been thoroughly investigated. We found that IR led to renal CHOP expression, accompanied by apoptosis induction. Renal IRI was markedl...

متن کامل

4-Phenylbutyrate protects rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting endoplasmic reticulum stress

4‑phenylbutyrate (4‑PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress‑induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia‑induced ER dysfunction has yet to be reported. In the present study, the effects of 4‑PBA‑induced ER stress inhibition on i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 24 25  شماره 

صفحات  -

تاریخ انتشار 2015