Population growth and persistence in a heterogeneous environment: the role of diffusion and advection
نویسندگان
چکیده
The spatio-temporal dynamics of a population present one of the most fascinating aspects and challenges for ecological modelling. In this article we review some simple mathematical models, based on one dimensional reaction-diffusion-advection equations, for the growth of a population on a heterogeneous habitat. Considering a number of models of increasing complexity we investigate the often contrary roles of advection and diffusion for the persistence of the population. When it is possible we demonstrate basic mathematical techniques and give the critical conditions providing the survival of a population in simple systems and in more complex resource-consumer models which describe the dynamics of phytoplankton in a water column.
منابع مشابه
Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملGalerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
متن کاملLimiting Profiles of Semilinear Elliptic Equations with Large Advection in Population Dynamics
Abstract. Limiting profiles of solutions to a 2×2 Lotka-Volterra competitiondiffusion-advection system, when the strength of the advection tends to infinity, are determined. The two species, competing in a heterogeneous environment, are identical except for their dispersal strategies: One is just random diffusion while the other is “smarter” a combination of random diffusion and a directed move...
متن کامل