v 3 2 4 A ug 1 99 9 Finite – size scaling properties and Casimir forces in an exactly solvable quantum statistical – mechanical model 1

نویسندگان

  • H. Chamati
  • D. M. Danchev
  • N. S. Tonchev
چکیده

Finite–size scaling properties and Casimir forces in an exactly solvable quantum statistical–mechanical model Abstract A d–dimensional finite quantum model system confined to a general hypercubical geometry with linear spatial size L and " temporal size " 1/T (T-temperature of the system) is considered in the spherical approximation under periodic boundary conditions. Because of its close relation with the system of quantum rotors it represents an effective model for studying the low–temperature behaviour of quantum Heisenberg antiferromagnets. Close to the zero–temperature quantum critical point the ideas of finite–size scaling are used for studying the critical behaviour of the model. For a film geometry in different space dimensions 1 2 σ < d < 3 2 σ , where 0 < σ ≤ 2 controls the long–ranginess of the interactions, an analysis of the free energy and the Casimir forces is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

v 2 5 N ov 1 99 7 Finite – size scaling properties and Casimir forces in an exactly solvable quantum statistical – mechanical model 1

Finite–size scaling properties and Casimir forces in an exactly solvable quantum statistical–mechanical model Abstract A d–dimensional finite quantum model system confined to a general hypercubical geometry with linear spatial size L and " temporal size " 1/T (T-temperature of the system) is considered in the spherical approximation under periodic boundary conditions. Because of its close relat...

متن کامل

Finite – size scaling properties and Casimir forces in an exactly solvable quantum statistical – mechanical model 1

Finite–size scaling properties and Casimir forces in an exactly solvable quantum statistical–mechanical model Abstract A d–dimensional finite quantum model system confined to a general hypercubical geometry with linear spatial size L and " temporal size " 1/T (T-temperature of the system) is considered in the spherical approximation under periodic boundary conditions. Because of its close relat...

متن کامل

Casimir forces in a quantum exactly solvable model with long - range interaction

A d–dimensional quantum model system confined to a general hypercubical geometry with linear spatial size L and " temporal size " 1/T (T-temperature of the system) is considered in the spherical approximation under periodic boundary conditions. For a film geometry in different space dimensions 1 2 σ < d < 3 2 σ , where 0 < σ ≤ 2 is a parameter controlling the decay of the long–range interaction...

متن کامل

ar X iv : h ep - l at / 9 90 80 21 v 1 1 8 A ug 1 99 9 1 Casimir scaling or flux counting ? HUB - EP - 99 / 44

Static colour sources offer an ideal environment for investigating the confinement mechanism and testing models of low energy QCD. Despite the availability of a wealth of information on fundamental potentials [1,2], only few lattice investigations of forces between sources in higher representations of the gauge group SU(N) exist. Most of these studies have been done in SU(2) gauge theory in thr...

متن کامل

ar X iv : h ep - t h / 95 08 02 2 v 1 4 A ug 1 99 5 UICHEP - TH / 95 - 5 Methods for Generating Quasi - Exactly Solvable Potentials

We describe three different methods for generating quasi-exactly solvable potentials, for which a finite number of eigenstates are analytically known. The three methods are respectively based on (i) a polynomial ansatz for wave functions; (ii) point canonical transformations; (iii) supersymmetric quantum mechanics. The methods are rather general and give considerably richer results than those a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999