TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders
نویسندگان
چکیده
Gastrointestinal (GI) motility disorders such as irritable bowel syndrome (IBS) can occur when coordinated smooth muscle contractility is disrupted. Potassium (K+) channels regulate GI smooth muscle tone and are key to GI tract relaxation, but their molecular and functional phenotypes are poorly described. Here we define the expression and functional roles of mechano-gated K2P channels in mouse ileum and colon. Expression and distribution of the K2P channel family were investigated using quantitative RT-PCR (qPCR), immunohistochemistry and confocal microscopy. The contribution of mechano-gated K2P channels to mouse intestinal muscle tension was studied pharmacologically using organ bath. Multiple K2P gene transcripts were detected in mouse ileum and colon whole tissue preparations. Immunohistochemistry confirmed TREK-1 expression was smooth muscle specific in both ileum and colon, whereas TREK-2 and TRAAK channels were detected in enteric neurons but not smooth muscle. In organ bath, mechano-gated K2P channel activators (Riluzole, BL-1249, flufenamic acid, and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate) induced relaxation of KCl and CCh pre-contracted ileum and colon tissues and reduced the amplitude of spontaneous contractions. These data reveal the specific expression of mechano-gated K2P channels in mouse ileum and colon tissues and highlight TREK-1, a smooth muscle specific K2P channel in GI tract, as a potential therapeutic target for combating motility pathologies arising from hyper-contractility.
منابع مشابه
Neuropilin 1 Is Essential for Gastrointestinal Smooth Muscle Contractility and Motility in Aged Mice
BACKGROUND AND AIMS Neuropilin 1 (NRP1) is a non-tyrosine kinase receptor for vascular endothelial growth factor (VEGF) and class 3 semaphorins, playing a role in angiogenesis and neuronal axon guidance, respectively. NRP1 is expressed in smooth muscle cells (SMC) but the functional role of NRP1 in SMC has not been elucidated. We therefore investigated the biological relevance of NRP1 in SMC in...
متن کاملIn vivo and in vitro effects of Salsola collina on gastrointestinal motility in rats
Objective(s): Salsola collina is widely distributed along the Bohai coast and consumed as an edible plant by native residents. We have found surprisingly that S. collina extracts promoted gastrointestinal motility in mice previously. In the present study, effects of S. collina on gastrointestinal motility in rats and its underlying mechanism were explored.<st...
متن کاملCellular mechanism of mechanotranscription in colonic smooth muscle cells.
Mechanical stretch in obstruction induces expression of cyclooxygenase-2 (COX-2) in gut smooth muscle cells (SMCs). The stretch-induced COX-2 plays a critical role in motility dysfunction in obstructive bowel disorders (OBDs). The aims of the present study were to investigate the intracellular mechanism of mechanotranscription of COX-2 in colonic SMCs and to determine whether inhibition of mech...
متن کاملPathophysiology of motility dysfunction in bowel obstruction: role of stretch-induced COX-2.
In gastrointestinal conditions such as bowel obstruction, pseudo-obstruction, and idiopathic megacolon, the lumen of affected bowel segments is distended and its motility function impaired. Our hypothesis is that mechanical stretch of the distended segments alters gene expression of cyclooxygenase-2 (COX-2), which impairs motility function. Partial obstruction was induced with a silicon band in...
متن کاملEffect of genetic SSTR4 ablation on inflammatory peptide and receptor expression in the non-inflamed and inflamed murine intestine
The recently suggested pivotal role of somatostatin (SOM) receptor 4 (SSTR4) in inflammation and nociception in several non-intestinal organs and in gastrointestinal (GI) physiology, necessitates exploration of the role of SSTR4 in GI pathophysiology. Therefore, the role of SSTR4 in GI activity was explored by investigating the effects of SSTR4 deficiency on intestinal motility, smooth muscle c...
متن کامل