Dual Dynamical Systems for Circle Endomorphisms

نویسندگان

  • FREDERICK P. GARDINER
  • YUNPING JIANG
چکیده

We show that every uniformly asymptotically affine circle endomorphism has a uniformly asymptotically conformal (UAC) extension to the complex plane. Then we use the UAC extension to construct the dual dynamical system, the dual annulus, and the dual circle expanding map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function Models for Teichmüller Spaces and Dual Geometric Gibbs Type Measure Theory for Circle Dynamics

Geometric models and Teichmüller structures have been introduced for the space of smooth circle endomorphisms and for the space of uniformly symmetric circle endomorphisms. The latter one is the completion of the previous one under the Techmüller metric. Moreover, the spaces of geometric models as well as the Teichmüller spaces can be described as the space of Hölder continuous scaling function...

متن کامل

On Expanding Endomorphisms of the Circle Ii

In this paper we give sufficient conditions for weak isomorphism of Lebesgue measure-preserving expanding endomorphisms of S1.

متن کامل

Circle Endomorphisms, Dual Circles and Thompson’s Group

We construct the dual Cantor set for a degree two expanding map f acting as cover of the circle T onto itself. Then we use the criterion for a continuous function on this Cantor set to be the scaling function of a uniformly asymptotically affine UAA expanding map to show that the scaling function for f descends to a continuous function on a dual circle T∗. We use this representation to view the...

متن کامل

Scaling Functions And Gibbs Measures And Teichmüller Spaces Of Circle Endomorphisms

We study the scaling function of a C1+h expanding circle endomorphism. We find necessary and sufficient conditions for a Hölder continuous function on the dual symbolic space to be realized as the scaling function of a C1+h expanding circle endomorphism. We further represent the Teichmüller space of C1+h expanding circle endomorphisms by the space of Hölder continuous functions on the dual symb...

متن کامل

Dynamical Properties of Logical Substitutions

Many kinds of algebraic structures have associated dual topological spaces, among others commutative rings with 1 (this being the paradigmatic example), various kinds of lattices, boolean algebras, C∗-algebras, . . . . These associations are functorial, and hence algebraic endomorphisms of the structures give rise to continuous selfmappings of the dual spaces, which can enjoy various dynamical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007