Effect of Curing Conditions on Strength of Fly ash-based Self-Compacting Geopolymer Concrete
نویسنده
چکیده
This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the compressive strength of self-compacting geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time and curing temperature in the range of 24-96 hours and 60-90°C respectively. The essential workability properties of freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and resistance to segregation as specified by guidelines on Self-compacting Concrete by EFNARC were satisfied. Test results indicate that longer curing time and curing the concrete specimens at higher temperatures result in higher compressive strength. There was increase in compressive strength with the increase in curing time; however increase in compressive strength after 48 hours was not significant. Concrete specimens cured at 70°C produced the highest compressive strength as compared to specimens cured at 60°C, 80°C and 90°C. Keywords—Geopolymer Concrete, Self-compacting Geopolymer concrete, Compressive strength, Curing time, Curing temperature
منابع مشابه
Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete
Due to growing environmental concerns of the cement industry, alternative cement technologies have become an area of increasing interest. It is now believed that new binders are indispensable for enhanced environmental and durability performance. Self-compacting Geopolymer concrete is an innovative method and improved way of concreting operation that does not require vibration for placing it an...
متن کاملEffect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt
Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer con...
متن کاملEffect of Glass Powder and GGBS on Strength of Fly Ash Based Geopolymer Concrete
In this study, the effect of glass powder (GP) and ground granulated blast furnace slag (GGBS) on the compressive strength of Fly ash based geopolymer concrete has been investigated. The mass ratio of fine aggregate (fA) to coarse aggregate (CA) was maintained constant. NaOH flakes dissolved in water was used as activating liquid and mixed with fly ash (FA) to produce geopolymer paste or cement...
متن کاملMechanical Behaviour of Geopolymer Concrete under Ambient Curing
Utilisation of fly ash and Ground Granulated Blast Slag as an alternative material in concrete reduces the use of OPC in concrete. Evolution of geopolymer concrete cured at ambient temperature broadens its suitability and applicability to concrete based structures. This paper presents the mix proportions and outcome of an experimental study on the density and compressive strength of geopolymer ...
متن کاملEffect of Superplasticizer and NaOH Molarity on Workability, Compressive Strength and Microstructure Properties of Self-Compacting Geopolymer Concrete
The research investigates the effects of super plasticizer and molarity of sodium hydroxide alkaline solution on the workability, microstructure and compressive strength of self compacting geopolymer concrete (SCGC). SCGC is an improved way of concreting execution that does not require compaction and is made by complete elimination of ordinary Portland cement content. The parameters studied wer...
متن کامل