The center stable matchings and the centers of cover graphs of distributive lattices

نویسندگان

  • Christine T. Cheng
  • Eric McDermid
  • Ichiro Suzuki
چکیده

Let I be an instance of the stable marriage (SM) problem. In the late 1990s, Teo and Sethuraman discovered the existence of median stable matchings, which are stable matchings that match all participants to their (lower/upper) median stable partner. About a decade later, Cheng showed that not only are they locally-fair, but they are also globally-fair in the following sense: when G(I) is the cover graph of the distributive lattice of stable matchings, these stable matchings are also medians of G(I) – i.e., their average distance to the other stable matchings is as small as possible. Unfortunately, finding a median stable matching of I is #P-hard. Inspired by the fairness properties of the median stable matchings, we study the center stable matchings which are the centers of G(I) – i.e., the stable matchings whose maximum distance to any stable matching is as small as possible. Here are our two main results. First, we show that a center stable matching of I can be computed in O(|I|) time. Thus, center stable matchings are the first type of globally-fair stable matchings we know of that can be computed efficiently. Second, we show that in spite of the first result, there are similarities between the set of median stable matchings and the set of center stable matchings of I. The former induces a hypercube in G(I) while the latter is the union of hypercubes of a fixed dimension in G(I). Furthermore, center stable matchings have a property that approximates the one found by Teo and Sethuraman for median stable matchings. Finally, we note that our results extend to other variants of SM whose solutions form a distributive lattice and whose rotation posets can be constructed efficiently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eccentricity, center and radius computations on the cover graphs of distributive lattices with applications to stable matchings

Birkhoff’s fundamental theorem on distributive lattices states that for every distributive lattice L there is a poset PL whose lattice of down-sets is order-isomorphic to L. Let G(L) denote the cover graph of L. In this paper, we consider the following problems: Suppose we are simply given PL. How do we compute the eccentricity of an element of L in G(L)? How about a center and the radius of G(...

متن کامل

Stable Roommates Matchings, Mirror Posets, Median Graphs, and the Local/Global Median Phenomenon in Stable Matchings

For stable marriage (SM) and solvable stable roommates (SR) instances, it is known that there are stable matchings that assign each participant to his or her (lower/upper) median stable partner. Moreover, for SM instances, a stable matching has this property if and only if it is a median of the distributive lattice formed by the instance’s stable matchings. In this paper, we show that the above...

متن کامل

Distributive Lattices from Graphs

Several instances of distributive lattices on graph structures are known. This includes c-orientations (Propp), α-orientations of planar graphs (Felsner/de Mendez) planar flows (Khuller, Naor and Klein) as well as some more special instances, e.g., spanning trees of a planar graph, matchings of planar bipartite graphs and Schnyder woods. We provide a characterization of upper locally distributi...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011