Active Machine Learning for Consideration Heuristics

نویسندگان

  • Daria Dzyabura
  • John R. Hauser
چکیده

W develop and test an active-machine-learning method to select questions adaptively when consumers use heuristic decision rules. The method tailors priors to each consumer based on a “configurator.” Subsequent questions maximize information about the decision heuristics (minimize expected posterior entropy). To update posteriors after each question, we approximate the posterior with a variational distribution and use belief propagation (iterative loops of Bayes updating). The method runs sufficiently fast to select new queries in under a second and provides significantly and substantially more information per question than existing methods based on random, market-based, or orthogonal-design questions. Synthetic data experiments demonstrate that adaptive questions provide close-to-optimal information and outperform existing methods even when there are response errors or “bad” priors. The basic algorithm focuses on conjunctive or disjunctive rules, but we demonstrate generalizations to more complex heuristics and to the use of previous-respondent data to improve consumer-specific priors. We illustrate the algorithm empirically in a Web-based survey conducted by an American automotive manufacturer to study vehicle consideration (872 respondents, 53 feature levels). Adaptive questions outperform market-based questions when estimating heuristic decision rules. Heuristic decision rules predict validation decisions better than compensatory rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction

Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...

متن کامل

Active Learning for Multi-Class Logistic Regression

Which of the many proposed methods for active learning can we expect to yield good performance in learning logistic regression classifiers? In this article, we evaluate different approaches to determine suitable practices. Among our contributions, we test several explicit objective functions for active learning: an empirical consideration lacking in the literature until this point. We develop a...

متن کامل

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

A bi-objective model for a scheduling problem of unrelated parallel batch processing machines with fuzzy parameters by two fuzzy multi-objective meta-heuristics

This paper considers a bi-objective model for a scheduling problem of unrelated parallel batch processing machines to minimize the makespan and maximum tardiness, simultaneously. Each job has a specific size and the data corresponding to its ready time, due date and processing time-dependent machine are uncertain and determined by trapezoidal fuzzy numbers. Each machine has a specific capacity,...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Marketing Science

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011