Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum.

نویسندگان

  • N W Seidler
  • I Jona
  • M Vegh
  • A Martonosi
چکیده

The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/mg protein, indicating stoichiometric reaction of CPA with the Ca2+-ATPase. Cyclopiazonic acid caused similar inhibition of the Ca2+-stimulated ATP hydrolysis in intact sarcoplasmic reticulum and in a purified preparation of Ca2+-ATPase. Cyclopiazonic acid also inhibited the Ca2+-dependent acetylphosphate, p-nitrophenylphosphate and carbamylphosphate hydrolysis by sarcoplasmic reticulum. ATP protected the enzyme in a competitive manner against inhibition by CPA, while a 10(5)-fold change in free Ca2+ concentration had only moderate effect on the extent of inhibition. CPA did not influence the crystallization of Ca2+-ATPase by vanadate or the reaction of fluorescein-5'-isothiocyanate with the Ca2+-ATPase, but it completely blocked at concentrations as low as 1-2 mol of CPA/mol of ATPase the fluorescence changes induced by Ca2+ and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) in FITC-labeled sarcoplasmic reticulum and inhibited the cleavage of Ca2+-ATPase by trypsin at the T2 cleavage site in the presence of EGTA. These observations suggest that CPA interferes with the ATP-induced conformational changes related to Ca2+ transport. The effect of CPA on the sarcoplasmic reticulum Ca2+-ATPase appears to be fairly specific, since the kidney and brain Na+,K+-ATPase (EC 3.6.1.37), the gastric H+,K+-ATPase (EC 3.6.1.36), the mitochondrial F1-ATPase (EC 3.6.1.34), the Ca2+-ATPase of erythrocytes, and the Mg2+-activated ATPase of T-tubules and surface membranes of rat skeletal muscle were not inhibited by CPA, even at concentrations as high as 1000 nmol/mg protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory effects of cyclopiazonic acid on the spike after-hyperpolarization in rat sympathetic neurons.

Cyclopiazonic acid (CPA), a novel specific inhibitor of Ca(2+)-ATPase in muscle sarcoplasmic reticulum, shortened the Ca(2+)-dependent after-hyperpolarization (AHP) following a spike in the rat superior cervical ganglion. This inhibitory effect was reversible and dependent on concentrations between 1 and 5 microM. The AHP in the presence of 5 microM CPA was not depressed further by ryanodine, n...

متن کامل

Sarcoplasmic-endoplasmic reticulum Ca2+-ATPase inhibition prevents endothelin A receptor antagonism in rat aorta.

This study tested whether sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase regulates the ability of endothelin receptor antagonist to inhibit the endothelin-1 constriction. The endothelin A receptor antagonist BQ-123 (1 microM) completely relaxed constriction to 10 nM endothelin-1 in endothelium-denuded rat aorta. Challenge with cyclopiazonic acid (10 microM), a sarcoplasmic-endoplasmic reticul...

متن کامل

Role of Endothelium on Cyclopiazonic Acid-induced Vascular Contractions in Rat Aorta

Spacio-temporal changes of intracellular Ca2+ concentrations ([Ca2+]i) are known to play central role in numerous cellular processes such as muscle contraction, gene expression, development, proliferation and apoptosis1. While global increases in [Ca2+]i in vascular smooth muscle cells (VSMCs) elicit contraction2, 3, [Ca2+]i elevation in endothelial cells (ECs) causes vasorelaxation by triggeri...

متن کامل

A role for the sarcoplasmic reticulum in Ca2+ extrusion from rabbit inferior vena cava smooth muscle.

Ca2+extrusion from rabbit inferior vena cava smooth muscle was studied using ratiometric fura 2 fluorimetry. Concomitant blockade of the plasma membrane Ca2+-adenosinetriphosphatase (ATPase; PCMA), Na+-Ca2+exchanger, and sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) completely prevented the decline in intracellular Ca2+ concentration ([Ca2+]i) normally observed when Ca2+ is removed from the ex...

متن کامل

On the inhibition mechanism of sarcoplasmic or endoplasmic reticulum Ca2+-ATPases by cyclopiazonic acid.

Ca2+-ATPase inhibition by stoichiometric and substoichiometric concentrations of cyclopiazonic acid was studied in sarcoplasmic reticulum preparations from rabbit fast-twitch muscle. The apparent affinity of the nonphosphorylated enzyme for ATP showed a Kd of approximately 3 microM in the absence of cyclopiazonic acid and approximately 28 microM in the presence of the drug. Fractional saturatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 264 30  شماره 

صفحات  -

تاریخ انتشار 1989