Catalytic activities of noble metal atoms on WO3 (001): nitric oxide adsorption
نویسندگان
چکیده
Using first-principles density functional theory calculations within the generalized gradient approximation, we investigate the adsorption of NO molecule on a clean WO3(001) surface as well as on the noble metal atom (Cu, Ag, and Au)-deposited WO3(001) surfaces. We find that on a clean WO3 (001) surface, the NO molecule binds to the W atom with an adsorption energy (E ads) of -0.48 eV. On the Cu- and Ag-deposited WO3(001) surface where such noble metal atoms prefer to adsorb on the hollow site, the NO molecule also binds to the W atom with E ads = -1.69 and -1.41 eV, respectively. This relatively stronger bonding of NO to the W atom is found to be associated with the larger charge transfer of 0.43 e (Cu) and 0.33 e (Ag) from the surface to adsorbed NO. However, unlike the cases of Cu-WO3(001) and Ag-WO3(001), Au atoms prefer to adsorb on the top of W atom. On such an Au-WO3(001) complex, the NO molecule is found to form a bond to the Au atom with E ads = -1.32 eV. Because of a large electronegativity of Au atom, the adsorbed NO molecule captures the less electrons (0.04 e) from the surface compared to the Cu and Ag catalysts. Our findings not only provide useful information about the NO adsorption on a clean WO3(001) surface as well as on the noble metal atoms deposited WO3(001) surfaces but also shed light on a higher sensitive WO3 sensor for NO detection employing noble metal catalysts.
منابع مشابه
Noble metal ionic catalysts.
Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust cat...
متن کاملDefective Tungsten Oxide Hydrate Nanosheets for Boosting Aerobic Coupling of Amines: Synergistic Catalysis by Oxygen Vacancies and Brønsted Acid Sites.
Adsorption and activation of molecules on a surface holds the key to heterogeneous catalysis toward aerobic oxidative reactions. To achieve high catalytic activities, a catalyst surface should be rationally tailored to interact with both organic substrates and oxygen molecules. Here, a facile bottom-up approach to defective tungsten oxide hydrate (WO3 ·H2 O) nanosheets that contain both surface...
متن کاملCatalysis on singly dispersed bimetallic sites.
A catalytic site typically consists of one or more atoms of a catalyst surface that arrange into a configuration offering a specific electronic structure for adsorbing or dissociating reactant molecules. The catalytic activity of adjacent bimetallic sites of metallic nanoparticles has been studied previously. An isolated bimetallic site supported on a non-metallic surface could exhibit a distin...
متن کاملUnique Reactivity of Transition Metal Atoms Embedded in Graphene to CO, NO, O2 and O Adsorption:
Taking the adsorption of CO, NO, O2 and O as probes, we investigated the electronic structure of transition metal atoms (TM, TM = Fe, Co, Ni, Cu and Zn) embedded in graphene by first-principles-based calculations. We showed that these TM atoms can be effectively stabilized on monovacancy defects on graphene by forming plausible interactions with the C atoms associated with dangling bonds. These...
متن کاملDehydration, dehydrogenation, and condensation of alcohols on supported oxide catalysts based on cyclic (WO3)3 and (MoO3)3 clusters.
Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article, we review the synthesis and activity of well-defined model WO3 and MoO3 catalysts that are prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/keton...
متن کامل