G–quasiasymptotics at Infinity to Semilinear Hyperbolic System

نویسندگان

  • Stevan Pilipović
  • Mirjana Stojanović
  • S. Pilipović
  • M. Stojanović
چکیده

Stevan Pilipović, Mirjana Stojanović Abstract. We recall the definition of G–quasiasymptotics at infinity in a framework of Colombeau space G (cf. [8]) and give an application of that notion to a Cauchy problem for a strictly semilinear hyperbolic system. It turns out that quasiasymptotic behaviour at infinity of the solution inherits the quasiasymptotic behaviour at infinity of initial data under suitable assumptions on the nonlinear term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Theorems for Quasiasymptotics of Distributions at Infinity

Complete structural theorems for quasiasymptotics of distributions are presented in this article. For this, asymptotically homogeneous functions and associate asymptotically homogeneous functions at infinity with respect to a slowly varying function are employed. The proposed analysis, based on the concept of asymptotically and associate asymptotically homogeneous functions, allows to obtain ea...

متن کامل

Constant curvature foliations in asymptotically hyperbolic spaces

Let (M, g) be an asymptotically hyperbolic manifold with a smooth conformal compactification. We establish a general correspondence between semilinear elliptic equations of scalar curvature type on ∂M and Weingarten foliations in some neighbourhood of infinity inM . We focus mostly on foliations where each leaf has constant mean curvature, though our results apply equally well to foliations whe...

متن کامل

On Blow-up at Space Infinity for Semilinear Heat Equations

We are interested in solutions of semilinear heat equations which blow up at space infinity. In [7], we considered a nonnegative blowing up solution of ut = ∆u+ u, x ∈ R, t > 0 with initial data u0 satisfying 0 ≤ u0(x) ≤ M, u0 ≡ M and lim |x|→∞0 = M, where p > 1 and M > 0 is a constant. We proved in [7] that the solution u blows up exactly at the blow-up time for the spatially constant solution...

متن کامل

On Vanishing at Space Infinity for a Semilinear Heat Equation with Absorption

We consider a Cauchy problem for a semilinear heat equation with absorption. The initial datum of the problem is bounded and its infimum is positive. We study solutions which do not vanish in the total space at the vanishing time; they vanish only at space infinity.

متن کامل

Asymptotic behaviour of solutions of semilinear hyperbolic systems in arbitrary domains

In this paper the long time asymptotic behavior of solutions of semilinear symmetric hyperbolic system including Maxwell s equations and the scalar wave equation in an ar bitraty domain are investigated The possibly nonlinear damping term may vanish on a certain subset of the domain It is shown that the solution decays weakly to zero if and only if the initial state is orthogonal to all station...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004