Mean Polynomial Kernel and Its Application to Vector Sequence Recognition
نویسندگان
چکیده
SUMMARY Classification tasks in computer vision and brain-computer interface research have presented several applications such as biometrics and cognitive training. However, like in any other discipline, determining suitable representation of data has been challenging, and recent approaches have deviated from the familiar form of one vector for each data sample. This paper considers a kernel between vector sets, the mean polynomial kernel, motivated by recent studies where data are approximated by linear subspaces, in particular, methods that were formulated on Grassmann manifolds. This kernel takes a more general approach given that it can also support input data that can be modeled as a vector sequence, and not necessarily requiring it to be a linear subspace. We discuss how the kernel can be associated with the Projection kernel, a Grassmann kernel. Experimental results using face image sequences and physiological signal data show that the mean polynomial kernel surpasses existing subspace-based methods on Grassmann manifolds in terms of predictive performance and efficiency.
منابع مشابه
A Sequence Kernel and its Application to Speaker Recognition
A novel approach for comparing sequences of observations using an explicit-expansion kernel is demonstrated. The kernel is derived using the assumption of the independence of the sequence of observations and a mean-squared error training criterion. The use of an explicit expansion kernel reduces classifier model size and computation dramatically, resulting in model sizes and computation one-hun...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملLeast-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture
This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...
متن کاملAn adaptive support vector regression based on a new sequence of unified orthogonal polynomials
In practical engineering, small-scale data sets are usually sparse and contaminated by noise. In this paper, we propose a new sequence of orthogonal polynomials varying with their coefficient, unified Chebyshev polynomials (UCP), which has two important properties, namely, orthogonality and adaptivity. Based on these new polynomials, a new kernel function, the unified Chebyshev kernel (UCK), is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEICE Transactions
دوره 97-D شماره
صفحات -
تاریخ انتشار 2014