A Rational Catalan Formula for (m, 3)-Hikita Polynomials
نویسندگان
چکیده
Hikita polynomials are the combinatorial side of the rational shuffle theorem. Building upon a recent formula for (m, 3)-Catalan polynomials, we prove a formula for (m, 3)-Hikita polynomials in terms of Catalan polynomials. This formula shows a surprising relation among coefficients of Hikita polynomials and implies deeper recursive relations and proves the q, t-symmetry of (m, 3)-Hikita polynomials.
منابع مشابه
Catalan Numbers for Complex Reflection Groups
We construct (q, t)-Catalan polynomials and q-Fuss-Catalan polynomials for any irreducible complex reflection group W . The two main ingredients in this construction are Rouquier’s formulation of shift functors for the rational Cherednik algebras of W , and Opdam’s analysis of permutations of the irreducible representations of W arising from the Knizhnik-Zamolodchikov connection.
متن کاملSome Identities and a Matrix Inverse Related to the Chebyshev Polynomials of the Second Kind and the Catalan Numbers
In the paper, the authors establish two identities to express higher order derivatives and integer powers of the generating function of the Chebyshev polynomials of the second kind in terms of integer powers and higher order derivatives of the generating function of the Chebyshev polynomials of the second kind respectively, find an explicit formula and an identity for the Chebyshev polynomials ...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملRIMS - 1824 Rigged Configurations and Catalan , Stretched Parabolic Kostka
We will look at the Catalan numbers from the Rigged Configurations point of view originated [9] from an combinatorial analysis of the Bethe Ansatz Equations associated with the higher spin anisotropic Heisenberg models . Our strategy is to take a combinatorial interpretation of Catalan numbers Cn as the number of standard Young tableaux of rectangular shape (n2), or equivalently, as the Kostka ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2018