A new genome-scale metabolic model of Corynebacterium glutamicum and its application
نویسندگان
چکیده
BACKGROUND Corynebacterium glutamicum is an important platform organism for industrial biotechnology to produce amino acids, organic acids, bioplastic monomers, and biofuels. The metabolic flexibility, broad substrate spectrum, and fermentative robustness of C. glutamicum make this organism an ideal cell factory to manufacture desired products. With increases in gene function, transport system, and metabolic profile information under certain conditions, developing a comprehensive genome-scale metabolic model (GEM) of C. glutamicum ATCC13032 is desired to improve prediction accuracy, elucidate cellular metabolism, and guide metabolic engineering. RESULTS Here, we constructed a new GEM for ATCC13032, iCW773, consisting of 773 genes, 950 metabolites, and 1207 reactions. Compared to the previous model, iCW773 supplemented 496 gene-protein-reaction associations, refined five lumped reactions, balanced the mass and charge, and constrained the directionality of reactions. The simulated growth rates of C. glutamicum cultivated on seven different carbon sources using iCW773 were consistent with experimental values. Pearson's correlation coefficient between the iCW773-simulated and experimental fluxes was 0.99, suggesting that iCW773 provided an accurate intracellular flux distribution of the wild-type strain growing on glucose. Furthermore, genetic interventions for overproducing l-lysine, 1,2-propanediol and isobutanol simulated using OptForceMUST were in accordance with reported experimental results, indicating the practicability of iCW773 for the design of metabolic networks to overproduce desired products. In vivo genetic modifications of iCW773-predicted targets resulted in the de novo generation of an l-proline-overproducing strain. In fed-batch culture, the engineered C. glutamicum strain produced 66.43 g/L l-proline in 60 h with a yield of 0.26 g/g (l-proline/glucose) and a productivity of 1.11 g/L/h. To our knowledge, this is the highest titer and productivity reported for l-proline production using glucose as the carbon resource in a minimal medium. CONCLUSIONS Our developed iCW773 serves as a high-quality platform for model-guided strain design to produce industrial bioproducts of interest. This new GEM will be a successful multidisciplinary tool and will make valuable contributions to metabolic engineering in academia and industry.
منابع مشابه
Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum
BACKGROUND In silico genome-scale metabolic models enable the analysis of the characteristics of metabolic systems of organisms. In this study, we reconstructed a genome-scale metabolic model of Corynebacterium glutamicum on the basis of genome sequence annotation and physiological data. The metabolic characteristics were analyzed using flux balance analysis (FBA), and the results of FBA were v...
متن کاملAnalysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum.
The Gram-positive soil bacterium Corynebacterium glutamicum was discovered as a natural overproducer of glutamate about 50 years ago. Linked to the steadily increasing economical importance of this microorganism for production of glutamate and other amino acids, the quest for efficient production strains has been an intense area of research during the past few decades. Efficient production stra...
متن کاملIsolation of a new insertion sequence, IS13655, and its application to Corynebacterium glutamicum genome mutagenesis.
A new functional Corynebacterium glutamicum insertion sequence (IS) element, IS13655, was isolated using a suicide vector. The IS element was 1,293 bp in size and contained 26-bp imperfect inverted repeats (IRs) and 3-bp target site duplication as direct repeats (DRs). IS13655 harbored two ORFs with high similarity to the transposase of IS1206, an IS3 family element. IS13655 revealed relatively...
متن کاملIsolation and characterization of a native composite transposon, Tn14751, carrying 17.4 kilobases of Corynebacterium glutamicum chromosomal DNA.
A native composite transposon was isolated from Corynebacterium glutamicum ATCC 14751. This transposon comprises two functional copies of a corynebacterial IS31831-like insertion sequence organized as converging terminal inverted repeats. This novel 20.3-kb element, Tn14751, carries 17.4 kb of C. glutamicum chromosomal DNA containing various genes, including genes involved in purine biosynthesi...
متن کاملMetabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products
Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative c...
متن کامل