Porosities and Dimensions of Measures Satisfying the Doubling Condition

نویسنده

  • JEAN-PIERRE ECKMANN
چکیده

This paper explains the implications of a mathematical theory (by the same authors) of holes in fractals and their relation to dimension for measurements. The novelty of our approach is to consider the fractal measure on a set rather than just the support of that measure. This should take into account in a more precise way the distribution of data points in measured sets, such as the distribution of galaxies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porosities and Dimensions of Measures

University of Geneva, Departments of Physics and Mathematics, 1211 Geneva 4, Switzerland University of Jyväskylä, Department of Mathematics, P.O. Box 35, FIN-40351 Jyväskylä, Finland [email protected], [email protected], and [email protected] Abstract. We introduce a concept of porosity for measures and study relations between dimensions and porosities for two classes of measure...

متن کامل

Sharp Inequalities for Maximal Functions Associated with General Measures

Sharp weak type (1, 1) and L p estimates in dimension one are obtained for uncentered maximal functions associated with Borel measures which do not necessarily satisfy a doubling condition. In higher dimensions uncentered maximal functions fail to satisfy such estimates. Analogous results for centered maximal functions are given in all dimensions.

متن کامل

The John - Nirenberg type inequality for non - doubling measures

X. Tolsa defined the space of type BMO for a positive Radon measure satisfying some growth condition on R. This space is very suitable for the CalderónZygmund theory with non-doubling measures. Especially, the John-Nirenberg type inequality remains true. In this paper we introduce the localized and weighted version of this inequality and, as an application, we obtain some vector-valued inequali...

متن کامل

Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures

In this paper, related to RBMO, we prove the sharp maximal inequalities for the Morrey spaces with the measure μ satisfying the growth condition. As an application we obtain the boundedness of commutators for these spaces.

متن کامل

Multilinear Analysis on Metric Spaces

The multilinear Calderón–Zygmund theory is developed in the setting of RD-spaces, namely, spaces of homogeneous type equipped with measures satisfying a reverse doubling condition. The multiple-weight multilinear Calderón–Zygmund theory in this context is also developed in this work. The bilinear T1-theorems for Besov and Triebel–Lizorkin spaces in the full range of exponents are among the main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999