m at h . SP ] 6 M ay 1 99 8 Galerkin Eigenvector Approximations ∗

نویسنده

  • Christopher Beattie
چکیده

How close are Galerkin eigenvectors to the best approximation available out of the trial subspace ? Under a variety of conditions the Galerkin method gives an approximate eigenvector that approaches asymptotically the projection of the exact eigenvector onto the trial subspace – and this occurs more rapidly than the underlying rate of convergence of the approximate eigenvectors. Both orthogonal-Galerkin and Petrov-Galerkin methods are considered here with a special emphasis on nonselfadjoint problems. Consequences for the numerical treatment of elliptic PDEs discretized either with finite element methods or with spectral methods are discussed and an application to Krylov subspace methods for large scale matrix eigenvalue problems is presented. New lower bounds to the sep of a pair of operators are developed as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 98 05 02 5 v 1 [ m at h . SP ] 6 M ay 1 99 8 Absolute continuity and spectral concentration for slowly decaying potentials

We consider the spectral function ρ(µ) (µ ≥ 0) for the Sturm-Liouville equation y ′′ + (λ − q)y = 0 on [0, ∞) with the boundary condition y(0) = 0 and where q has slow decay O(x −α) (a > 0) as x → ∞. We develop our previous methods of locating spectral concentration for q with rapid exponential decay (this Journal 81 (1997) 333-348) to deal with the new theoretical and computational complexitie...

متن کامل

ar X iv : m at h / 99 05 11 8 v 1 [ m at h . L O ] 1 9 M ay 1 99 9 REMARKS ON SETS RELATED TO TRIGONOMETRIC SERIES

We show that several classes of sets, like N 0-sets, Arbault sets, N-sets and pseudo-Dirichlet sets are closed under adding sets of small size.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007