Asymptotic Number of General Cubic Graphs with given Connectivity
نویسنده
چکیده
Let g(2n, l, d) be the number of general cubic graphs on 2n labeled vertices with l loops and d double edges. We use inclusion and exclusion with two types of properties to determine the asymptotic behavior of g(2n, l, d) and hence that of g(2n), the total number of general cubic graphs of order 2n. We show that almost all general cubic graphs are connected. Moreover, we determined the asymptotic numbers of general cubic graphs with given connectivity.
منابع مشابه
Eccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملA note on polyomino chains with extremum general sum-connectivity index
The general sum-connectivity index of a graph $G$ is defined as $chi_{alpha}(G)= sum_{uvin E(G)} (d_u + d_{v})^{alpha}$ where $d_{u}$ is degree of the vertex $uin V(G)$, $alpha$ is a real number different from $0$ and $uv$ is the edge connecting the vertices $u,v$. In this note, the problem of characterizing the graphs having extremum $chi_{alpha}$ values from a certain collection of polyomino ...
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملCounting labeled general cubic graphs
Recurrence relations are derived for the numbers of labeled 3-regular graphs with given connectivity, order, number of double edges, and number of loops. This work builds on methods previously developed by Read, Wormald, Palmer, and Robinson. © 2007 Elsevier B.V. All rights reserved.
متن کاملThe augmented Zagreb index, vertex connectivity and matching number of graphs
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
متن کامل