Microstructural Analysis and Wear Performance of Carbon-Fiber-Reinforced SiC Composite for Brake Pads
نویسندگان
چکیده
Carbon-fiber-reinforced silicon carbide (C/C-SiC) composite is widely used as a friction material owing to its good performance, even though it is more expensive than metallic materials. The light C/C-SiC composite is an ideal candidate for weight reduction of frictional parts. In this study, the friction and wear behavior of C/C-SiC composite was assessed using a ball-on-disk friction tester under dry reciprocating sliding conditions at different temperatures of 25, 100, and 200 °C. The disk specimens were made of C/C-SiC composite, while the mating counterpart pins were made of bearing steel. The microstructure and wear track of the specimens were characterized using a scanning electron microscopy (SEM) and Raman spectroscopy. The microstructural analysis of the wear track revealed that the wear mechanism was abrasive. The friction coefficient and wear behavior of the specimens was dependent on the temperature, where the friction coefficients and wear rate increased with increasing temperature.
منابع مشابه
Resin-based Copper-free Brake Pads: A Right Selection of Potassium Titanate and Ceramic Fiber
The present study aimed to assess the effect of replacing copper as a multi-functional ingredient in the brake pad material with potassium titanate platelet (PTP) and a particular type of ceramic fiber (CF) copper-free composite. Chase dynamometer tests were conducted to compare a brake padchr('39')s tribological behavior when PTP and CF are added to the composition with that of the copper-bear...
متن کاملEvaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite
Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...
متن کاملEffect of Fiber Surface Treatment on Wear Characteristics of Carbon Fiber Reinforced Polyamide 6 Composites
Ozone modification method and air-oxidation were used for the surface treatment of polyacrylonitrile(PAN)-based carbon fiber. The surface characteristics of carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS). The interfacial properties of carbon fiber reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fiber pull-out tests. As a result...
متن کاملEffect of surface treatments on damping behavior of carbon and glass fiber reinforced friction material
The ability to absorb vibrations in a vehicle during braking conditions depends primarily on the selection of ingredients for a friction material and interfacial adhesion between all these ingredients. In this work, a hybrid brake friction material is developed by combination of carbon fiber (CF), glass fiber (GF), resin and other ingredients. The surfaces of carbon and glass fibers are c...
متن کاملPhysio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC
Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, lo...
متن کامل